
November 18, 2004 14:6 WSPC/111-IJCIS 00102

International Journal of Cooperative Information Systems
Vol. 13, No. 4 (2004) 441–485
c© World Scientific Publishing Company

A FRAMEWORK FOR DYNAMIC SEMANTIC

WEB SERVICES MANAGEMENT

RANDY HOWARD∗ and LARRY KERSCHBERG†

E-Center for E-Business, Department of Information and Software Engineering
MSN4A4, George Mason University, 4400 University Drive

Fairfax, VA, 22030-4444
∗choward@gmu.edu
†kersch@gmu.edu

http://eceb.gmu.edu/

The use of Web services as a means of dynamically discovering, negotiating, composing,
executing and managing services to materialize enterprise-scale workflow is an active
research topic. Existing approaches involve many disparate concepts, frameworks and
technologies. What is needed is a comprehensive and overarching framework that handles
the processing and workflow requirements of Virtual Organizations, maps them to a
collection of service-oriented tasks, dynamically configures these tasks from available
services, and manages the choreography and execution of these services. The goal is to
add semantics to Web services to endow them with capabilities needed for their successful
deployment in enterprise-scale systems for Virtual Organizations.

This paper introduces such a framework, the Knowledge-based Dynamic Semantic
Web Services (KDSWS) Framework that addresses in an integrated end-to-end man-
ner, the life-cycle of activities involved in preparing, publishing, requesting, discover-
ing, selecting, configuring, deploying, and delivering Semantic Web Services. In partic-
ular, the following issues are addressed with an emphasis on adaptability to rapidly
changing environments and standards: (1) semantic specification of both service’s and
requestor’s capabilities, constraints and preferences including quality of service, trust,
and security; (2) transaction control and workflow management; and (3) resource
management, interoperation and evolution of the Virtual Organization.

Keywords: Semantic web services; virtual organization; ontology; workflow; agent-based
systems.

1. Introduction

The relatively new concept of Web services is important to both e-Business and

e-Government in that applications may exchange functionality and information over

the Internet. Web services provide a service-oriented approach to system specifica-

tion, enable the componentization, wrapping and reuse of traditional applications,

thereby allowing them to participate as an integrated component to an e-Business

activity.1

Web services standards provide XML-based protocols to find publicly-registered

services, to understand their purpose and operation, to negotiate and agree

upon usage charges and quality-of-service commitments, and to invoke the

441

November 18, 2004 14:6 WSPC/111-IJCIS 00102

442 R. Howard & L. Kerschberg

services within the context of Internet-based workflow coordination of these services.

These standards include Universal Description, Discovery and Integration (UDDI),2

Simple Object Access Protocol (SOAP),3 and Web Services Description Language

(WSDL).4

“Semantic Web Services” (SWS)5 is the term that describes our research

approach. The ultimate vision of SWS is the dynamic discovery, configuration, and

deployment of a Virtual Organization (VO) from services distributed over hetero-

geneous systems, thereby creating a VO from collections of services. However, this

vision is far from reality, as companies presently configure services by hand, using

the telephone to coordinate interfaces, etc. In order to enable the vision, this paper

presents a unified framework to address the specification of service requirements,

map those requirements to composable services, and coordinate the execution of

services according to enterprise workflow requirements.

We view “Web services” as services that use little or no semantic markup, and

have little of the enhanced capability described in this paper. Semantic Web tech-

nology, on the other hand adds semantic and process oriented information, together

with heuristics and constraints that can be used to coordinate the activities of the

VO. SWS allow Web information to be structured not only for human consump-

tion, but also for machine processing.6 This base of Semantic Web technologies in-

volves Resource Description Framework (RDF),7 DARPA Agent Markup Language

(DAML),8 Ontology Inference Layer (OIL),9,10 DAML+OIL,11 and Web Ontology

Language (OWL).12 OWL-S13 (formerly DAML-S14 and an extension of OWL) is a

leading specification for the semantic description of Web services in order to facili-

tate their automation. An interesting question is: How do Web services relate to the

Semantic Web? The Semantic Web is “data integration across application, organi-

zational boundaries”, and Web services are “program integration across application

and organizational boundaries”.15 Tim Berners-Lee stated that Web services are

an actualization of the Semantic Web vision because the semantic markup of Web

services makes them computer-interpretable, use-apparent, and agent-ready.16,17

This paper introduces the Knowledge-based Dynamic Semantic Web Services

(KDSWS) Framework that addresses, in an integrated end-to-end manner, the

life-cycle of activities involved in preparing, publishing, requesting, discovering,

selecting, configuring, deploying, and delivering Semantic Web Services. In partic-

ular, the following issues are addressed: (1) semantic specification of both service’s

and requestor’s capabilities, constraints and preferences including quality of service,

trust, and security; and (2) resource management, interoperation and evolution of

the Virtual Organization.

1.1. Problem statement

Enterprise Application Integration (EAI) across a VO is difficult due to: (1) a mul-

titude of semantics and protocols; (2) the need to propagate and synchronize rules;

(3) constraints on elements; and (4) the temporal nature of a VO.18 A challenge

November 18, 2004 14:6 WSPC/111-IJCIS 00102

A Framework for Dynamic Semantic Web Services Management 443

for companies wishing to create Inter-Enterprise Interoperation (IEI) solutions via

Web services is to dynamically wrap and compose service-oriented functionality

for the VO. Present solutions require the hand-crafting of Web services and their

interfaces, although recent literature19 has begun to address these issues. Since the

use of Web services will continue to grow, the following issues need to be addressed

in order for this relatively new technology to scale:

• Web services need to transition from being selected statically and manually to

being discovered and composed dynamically to fulfill a request.

• In conjunction with the latter point, Web services often provide functionality

that is very similar to other Web services, and selecting which web service will

best fulfill a given request is very difficult. To effectively differentiate dynamically

among similar Web services requires additional information about the request,

requestor, organization, scenario, and suppliers that are involved in providing the

solution.

• There is a need to dynamically manage the enactment of workflow and transaction

control.

The handling of these issues needs to be streamlined in order to deal with

the heterogeneous and constantly changing environments within an enterprise, as

well as the rapidly progressing base of standards and protocols that support Web

services. Many integration solutions are rigid because they are developed for ad hoc

and individual interfaces. Also, many vendor solutions are proprietary, and gener-

ally target only the needs of their general customer base rather than facilitating

customization for specific customer needs.

Articles of Federation and Service Level Agreements should be incorporated into

the automation process in order to manage the execution cycle of the Web services.

In order for Web services to address business needs, they need to address such

issues as pricing, resource management, quality of service, scalability and delivery

schedule.

1.2. Issues with existing approaches

Web services technologies are currently facing the same types of problems in

implementing enterprise integration that “traditional” technologies have already

addressed in large scale deployments. The major problems5 are:

• Semantic Unification. Data exchanged between application systems or

trading partners (endpoints) are defined based on different schemas. When data

are exchanged in the form of messages, a data mediation problem arises that re-

quires resolution. A minor and related issue is that different application systems

or trading partners use different forms of syntax, in addition to different schemas

for messages. Even if endpoints describe their data in the form of ontologies, the

semantic unification problem remains to be solved.

November 18, 2004 14:6 WSPC/111-IJCIS 00102

444 R. Howard & L. Kerschberg

• Service Behavior. Different endpoints expect specific messages in a specific

order and with specific sequencing. Communicating endpoints have to guarantee

and to enforce the exchange behavior as agreed to establish interoperability.

• Endpoint Discovery. The manual establishment of trading relationships is con-

sidered error prone, slow and inflexible. Discovery mechanisms are put in place

(e.g. UDDI) that promise to make the automatic discovery process easier and

more reliable.

• Message Security and Trust Relationships. Communicating endpoints re-

quire assurance of message confidentiality and non-repudiation. Various security

schemes (e.g. SAML,20 WS-Security21) are being developed that attempt to ad-

dress these requirements. Furthermore, endpoints need to establish sufficient trust

to engage in a trading relationship.

• Process Management. Supply-chain processes are very complex and highly

dynamic. Attempts have been made to enable dynamic supply-chain reconfigu-

ration with agent technology and dynamic workflow technology. A large body of

work (e.g. ARIS,22 BPEL4WS, Business Process Modeling Language (BPML)23)

exists that has not yet found its way into industry and real applications.

• Integration Standards. A plethora of standards exists in the area of enterprise

integration. All of these have to be dealt with to some extent by the various

enterprises.

• Legacy Application Connectivity. Most data that are communicated are

managed by existing application systems that are not necessarily designed to be

integrated. Adapter technology exists that allows connecting easily to application

systems.

As mentioned, Semantic Web Services attempt to address the shortcomings of

Web services with respect to automation, and OWL-S is being established as a

primary specification for this endeavor. However, recent research24–26 has docu-

mented several shortcomings attributed to OWL-S. With respect to this research,

the notable limitations are:

• Conceptual ambiguity in that the major concepts of OWL-S (service, ground-

ing, and process) are still being clarified. For example, the concept of service is

regarded as “any Web-accessible program/sensor/device”.13,25

• Narrow scope because OWL-S also does not address fully the real-world issues25

related to the VO. For example, OWL-S considers the service and the process

aspects as the primary elements, but does not show how to specify federation,

agent and data store aspects.

• Loose design means that OWL-S does not adequately differentiate the context

of the service-related tasks such as discovery, composition and invocation.25

• Coupled function and description because OWL-S lacks an explicit and

declarative decoupling between the functional features of a process (what) and

the structural description of such processes (how).24

November 18, 2004 14:6 WSPC/111-IJCIS 00102

A Framework for Dynamic Semantic Web Services Management 445

• Static process declaration means that OWL-S does not provide for the

dynamic adjustment of an agent’s Process model during the interaction.26

As seen in Ref. 27, to achieve an end-to-end solution involves linking the many

disparate protocols and technologies, despite the fact that they are all still based

on the XML foundation. Approaches such as Business Process Execution Language

for Web Services (BPEL4WS),28 Web Services Choreography Interface (WSCI)29

and the World Wide Web Consortium’s (W3C) WS-Choreography group30 do not

address the full life-cycle of activities to automate Web services. The nuances

of these various technologies still need to be mediated to some level to be truly

interoperable.31 Additionally, these protocols do not address the aspects of speci-

fying agents and their operations, designating knowledge repositories, and policies

are just now coming into the literature. However, it will be interesting to see the

progress of the recently-formed Web Services Modeling Ontology32 initiative that

is working towards the standardization and a common architecture and platform

for Semantic Web Services.

The vision of ebXML (Electronic Business using eXtensible Markup Language)

is “to create a single global electronic marketplace where businesses can find each

other, agree to become trading partners, and conduct business”.33 ebXML describes

itself as “a modular suite of specifications that enables enterprises of any size and

in any geographical location to conduct business over the Internet”, and allows

“companies now have a standard method to exchange business messages, con-

duct trading relationships, communicate data in common terms and define and

register business processes”.34 However, ebXML positions itself (unsuccessfully to

date) as an alternative to the Web services architectural components of UDDI and

WSDL.33,35 However, there are aspects of ebXML that prove very useful to Web ser-

vices and to this research with regard to business interaction standards. RosettaNet

Partner Interface Processesr (PIPsr) also provide guidance for business interac-

tions as well, but not necessarily with a Web service focus.36

1.3. Paper organization

Section 1 has introduced the problem and has discussed some of the problems

associated with existing approaches. Section 2 deals with Web services in virtual

enterprises and shows how Grid technologies encounter and solve similar problems.

Next, the management needs of Web services within a VO are presented.

The Knowledge-based Dynamic Semantic Web Services Framework is presented

in Sec. 3 with a detailed discussion of its components. The framework is decom-

posed into three hierarchical layers consisting of Virtual Organization process spec-

ification, design specification and execution services. The mappings from one layer

to another are also explained. A meta-model for the KDSWS classes, properties,

relationships and constraints is developed using the Knowledge/Data Model con-

structs. The KDSWS Process Language is presented and discussed as a specification

language for enhanced SWS.

November 18, 2004 14:6 WSPC/111-IJCIS 00102

446 R. Howard & L. Kerschberg

Section 4 presents a case study in the form of an application scenario that

illustrates the major aspects of the KDSWS framework and the KDSWS Process

Language. It highlights the enhanced semantic services supported by the KDSWS.

Section 5 presents our conclusions and suggests areas for future research.

2. Web Services in a Virtual Organization

2.1. Virtual organization issues

A Virtual Organization, or enterprise, is one whose members are geograph-

ically apart, usually working by computer e-mail and groupware while ap-

pearing to others to be a single, unified organization with a real physical

location.37

The virtual enterprise is a temporary relationship with two or more

participants which is formed, operated, and dissolved to accomplish specific

short term goals. It differs from existing inter-organizational models by the

degree of shared accountability and responsibility of the participants and the

structure by which companies contribute their competencies.18

The next steps in the evolution of EAI and IEI are towards that of a VO. For

Web services to perform a significant role in a VO environment, many issues need

to be addressed to accommodate the disjointed, distributed, and temporal nature of

the VO. A VO is a dynamic collection of individuals, institutions, and resources.38

As stated in Ref. 18, “The activities of the virtual enterprise cycle are accom-

plished by processes that are owned and operated by individual members of the VO

or shared processes that are ‘owned’ jointly by the enterprise as a corporate entity.

Whether the processes are individually or jointly owned is largely predicated on

the objectives of the enterprise and how they are to be accomplished.”

Operating web-service-centric systems effectively within a VO offers unique

challenges because factions, herein referred to as partners, often compete and con-

flict with each other. Additionally, there often is no single dominant “partner-in-

charge”, nor is there an overarching policy to guide the process past roadblocks and

exceptions.

2.2. Grid technologies

Grid computing appears to be a promising trend for three reasons: (1) its

ability to make more cost-effective use of a given amount of computer re-

sources, (2) as a way to solve problems that cannot be approached without

an enormous amount of computing power, and (3) because it suggests that

the resources of many computers can be cooperatively and perhaps synergis-

tically harnessed and managed as a collaboration toward a common objec-

tive. In some grid computing systems, the computers may collaborate rather

than being directed by one managing computer. One likely area for the use

November 18, 2004 14:6 WSPC/111-IJCIS 00102

A Framework for Dynamic Semantic Web Services Management 447

of grid computing will be pervasive computing applications — those in which

computers pervade our environment without our necessary awareness.39

Grid computing (or the use of a computational grid) is often discussed in the

context of Virtual Organizations, and involves the provisioning of resources en-

capsulated behind a service-oriented view to insulate the client from the burden

of knowing which resources actually fulfill the request or where the resources are

located.38,40 The problem that underlies the Grid concept is coordinated resource

sharing and problem solving in dynamic, multi-institutional Virtual Organizations.

The sharing to be dealt with is primarily direct access to computers, software,

files, data, and other resources, as is required by a range of collaborative problem-

solving and resource-brokering strategies emerging in industry, science, and engi-

neering. This sharing is, necessarily, highly controlled, with resource providers and

consumers defining what is shared, who is allowed to share, and the conditions un-

der which sharing occurs. A set of individuals and/or institutions defined by such

sharing rules form what is called a Virtual Organization.38

Clients can make requests for grid resources without having to know which

precise resource within the grid services the request. Recent research initiatives

in the Grid community provide increasing levels of sophistication. Some enabling

technologies, such as ontologies and reasoning, knowledge management, knowledge

discovery and agent grids, are currently offered by the depicted layers, but their

main impact will be really evident when they will be used internally to enhance Grid

management and operation. It is predicted that peer-to-peer will be the orthogonal

technology on which main tasks such as presence management, resource discovery

and sharing, collaboration and self-configuration will be based.41,42

Regarding the Open Grid Services Architecture (OGSA) discussed in Ref. 40,

the term Grid service is a “(potentially transient) stateful service instance

supporting reliable and secure invocation (when required), lifetime management,

notification, policy management, credential management, and virtualization”,

where virtualize means that “resources at multiple levels, so that the same ab-

stractions and mechanisms can be used both within distributed Grids supporting

collaboration across organizational domains and within hosting environments span-

ning multiple tiers within a single IT domain”.

The WS-Resource Framework (WSRF)43 is being introduced as converging Grid

and Web services in order to restate OGSI concepts in terms of Web services. Three

main concerns noted about the OGSI are that it places “too much stuff in one

specification”, it does not work well with existing Web services tooling, and is too

object-oriented. Czajkowski44 explains the five technical specifications that define

the normative description of the WS-Resource approach in terms of specific Web

services message exchanges and related XML definitions. These technical specifica-

tions define the means by which:

• a WS-Resource can be destroyed, either synchronously with respect to a destroy

request or through a mechanism offering time-based (scheduled) destruction, and

November 18, 2004 14:6 WSPC/111-IJCIS 00102

448 R. Howard & L. Kerschberg

specified resource properties [WS-ResourceProperties] may be used to inspect and

monitor the lifetime of a WS-Resource (WSResourceLifetime);

• the type definition of a WS-Resource can be composed from the

interface description of a Web service and an XML resource properties docu-

ment, and the WS-Resource’s state can be queried and modified via Web services

message exchanges (WS-ResourceProperties);

• a Web service endpoint reference (WS-Addressing) can be renewed in the event

the addressing or policy information contained within it becomes invalid or stale

(WS-RenewableReferences);

• heterogeneous by-reference collections of Web services can be defined, whether

or not the services are WS-Resources (WS-ServiceGroups);

• fault reporting can be made more standardized through use of an XML Schema

type for base faults and rules for how this base fault type is used and extended

by Web services (WS-BaseFaults).

2.3. Web services management

Interoperability is the central issue for a VO, which means common protocols are

needed for users and resources to negotiate, establish, manage, and exploit shar-

ing relationships without doing harm (e.g. compromising security).38 Users make

requests to systems that require many layers of behind-the-scenes processing be

managed to service users’ needs. The management levels within a VO are strategic

(infrastructure), asset (resource management), and value-chain (processes).45 The

issues that exist with Web services operating across a VO are set within the context

of these layers:

• Strategic

• Roles and responsibilities of the partners

• Level of participation

• Governing and enforcement policies

• Resources made available within the organization and outside to customers

• Asset

• Distribution and management of resources

• Ownership and stewardship of resources

• Knowledge repository architecture (central versus distributed)

• Value-Chain

• Process control

• Handling anomalies

• Workflow management

• Coordination of constraints.

Additionally, workflows need to sense the environment capture scenarios by

using multi-level and specialized agents. Ontologies and taxonomies need to capture

and convey personalization to the workflow model. Workflows also need to work

November 18, 2004 14:6 WSPC/111-IJCIS 00102

A Framework for Dynamic Semantic Web Services Management 449

within a structure of enterprise and local constraints. Systems need to perceive the

condition of the environment and act accordingly. Systems need to be more adaptive

by providing structure for introspection of functions and methods. Systems need

to setup a teaching, as well as a learning, framework and address the latency of

learning as well. Metrics need to be identified and developed to measure effectiveness

for feedback mechanisms.

The W3C’s Management Model focuses on those aspects of the Web services

architecture related to the management of Web services; in particular with an em-

phasis on using the infrastructure offered by Web services to manage the resources

needed to deliver that infrastructure.46 The protocol indicated for using Web ser-

vices to manage distributed resources is the Web Services Distributed Management

(WSDM).47 This protocol is still in Technical Committee status, and has the ad-

ditional purpose of developing a model of a Web service as a manageable resource.

A newer protocol, WS-Federation, focuses on security and trust aspects48,49; the

concepts of federation are more encompassing in this research than those found in

WS-Federation.

3. Knowledge-based Dynamic Semantic Web Services Framework

This research introduces the Knowledge-based Dynamic Semantic Web Services

(KDSWS) Framework50 to deliver a comprehensive and integrated end-to-end so-

lution to dynamically prepare, publish, request, discover, select, configure, deploy

and deliver Semantic Web Services (SWS). The framework positions itself as an

enterprise-scale foundation to ultimately provide VOs with the interfaces necessary

to interoperate via Semantic Web Services using, and quickly adapt to, the plethora

of prevailing Semantic Web technologies and protocols. Thus, this approach con-

siders facets that are critical to the success of any organization (i.e. policies have

to be set, rules have to be established, etc.)

Like the Web Services Modeling Framework (WSMF),51 ontologies and media-

tion are an integral part of the KDSWS, and are manifested in the mappings and

heuristics. The structure and design of the components target, or map to, ontologi-

cal implementations such as OWL and OWL-S, albeit with potential extensions to

facilitate the additional functionality. A primary function of the heuristics is to en-

hance the mappings ability to dynamically mediate between disparate components.

This framework has similar guiding principles, with respect to incorporating

knowledge and providing a “protocol-independent” (versus language-independent)

conceptual base, to those found in Ref. 24. This framework also has similarities with

the Conceptual Architecture using ebXML described in Ref. 35 with respect to in-

corporating policies, agreements, and mechanisms for discovery and composition.

However, the KDSWS approaches the solution space from a different perspective

by placing more emphasis on a total enterprise solution (by specifying agent and

storage needs as well) and by providing a “way-forward” via a guiding methodol-

ogy as to how to use the structures. To this end, the KDSWS Framework is an

November 18, 2004 14:6 WSPC/111-IJCIS 00102

450 R. Howard & L. Kerschberg

enabling mechanism and foundation for implementations. See Sec. 5 to create an

implementation for this framework.

This research also positions itself as a meta-design specification to focus on

capturing the knowledge and intended purpose of the elements and their inter-

actions. Having a meta-approach to the research, some items are left at an ab-

stract level. Although mappings to detail implementations are presented, as with

any design endeavor, it is assumed that the structures presented here will require

implementation-level details to be developed to realize the actual benefit.

The KDL and KDSPL languages are semantic language; thus, they dispense with

low-level details in order to capture this knowledge and intent more effectively. The

low-level details such as exact algorithms, data structures, class definition are left

to additional software and procedures that can easily be inferred, and is beyond

the scope of this research provide the implementation-level of specification. Also,

specifying at this semantic level is easier than working with XML which tends to

be too verbose to work with manually.

The specification is presented at multiple levels, and the power of a knowledge-

based approach is that these elements are presented in an ontological paradigm

where the proper relations can be easily inferred. Some of the meta-model elements

take on a role as both KDL and KDSPL elements in order to convey both the data

and process aspects on the structures.

It is important to realize that the support of a Virtual Organization requires

more overhead than that of a simple and defined interface between applications.

The support of dynamic operations between partners requires additional support

and maintenance, as does any enterprise system, to perpetuate effective and efficient

functional components. Although the upfront work typically puts new entrants into

the VO at somewhat of a disadvantage, it is the intent of this research to enable

new partners to know what is expected and reduce the barrier to entry in order to

participate within the VO.

As shown in Fig. 1, the framework consists of the KDSWS Processes,

KDSWS Design Specification, and KDSWS Functional Architecture (note that un-

derlines denote framework components typically, but not always, specified in the

diagrams). Three layers are proposed because they correspond to the Requirements

(i.e. Processes dictate what has to be done), Design (i.e. Specifications dictate how

it is to be done), and Implementation (i.e. the Functional Architecture realizes the

design specification) phases in most development efforts. The KDSWS Processes

layer is segregated into Tasks and Threads; such segregation addresses the “loose

design” issue discussed earlier by providing the ability to specify behavior based

on the context in which an operation is invoked. The specification languages have

been crafted to incorporate the notion of context.

Tasks are well-delineated steps to deliver functionality via Web services, and

the KDSWS proposes the following collection of tasks for the Web services

life-cycle: Prepare for Publish, Publish, Prepare for Request, Request, Discover,

Select, Configure, Deploy, Deliver, Retire, and Interface. For additional context

November 18, 2004 14:6 WSPC/111-IJCIS 00102

A Framework for Dynamic Semantic Web Services Management 451

 8

!"#$"#%&'()*%++$"!!"!*&,"*-.((!"*+"!'#)/*'!!0"*+'!10!!"+*"%$.'"$*23*4$(5'+')#*&,"*%2'.'&3*&(*!4"1'63*2",%5'($*

2%!"+*()*&,"*1()&"7&*')*8,'1,*%)*(4"$%&'()*'!* ')5(9"+:* *;,"*!4"1'6'1%&'()*.%)#0%#"!*,%5"*2"")*1$%6&"+*&(*

')1($4($%&"*&,"*)(&'()*(6*1()&"7&:*

<=>? > *@0)1 &'() %.*A $1, '&" 1 &0 $"

@0)1 &'()% .

@ "+ "$% &'()

A $1, '&"1 &0 $"

@ "+ "$% &"

A #") &!

@ "+ "$% &"

@ 0)1 &'()!

@ "+ "$% &"

<)(8 ."+# "

@ 0)1 &'()% .

<)(8 ."+# "

A $1, '&"1 &0 $"

> "B %) &'1

? "2 *C %!"

D ()E

> "B %) &'1

? "2 *C %!"

? "2 *> "$5 '1"! *F $(&(1(.!

? >=GH== I

J? GE>CKFG? > (*(*(

>JAF

L $'+ * I) &" $6%1 "

@ 0)1 &'()% .* A #") &* > " $5 '1 "!* A $1, '&" 1 &0 $"

H !"$ *A # ")13

F $(1 "!!

G %3"$ A #")13
G ') "

A #") &!

> 044($ &

A # ") &!

H !" $

> "$5 '1" !

I) &" . .'# ") &

M '++ ."8 % $"

> "$5 '1" !

? "2

> "$5 '1" !

@ 0)1 &'()% .

> " $5 '1" !

A #")13

> "$5 '1" !

N (($+ ')% &'()

A #")13

F .%)) ') #

= '!1(5" $3

D "#(&'% &'()

N () &$% 1 & ') #

> "$5 '1"

M "+ '% &'()

? ($9 6.(8

N (($+ ')% &'()

; $%)!%1 &'()

M %)%# "B ") &

> "10 $'&3

O "# '! &$% &'()

N "$&'6'1 % &'()

J) &(.(# 3

N 0 $% &'()

P (>

M () '&($')#

H !"$ *F $(6'."

A +B ') '! &$% & '()

J $+ "$ * ; $%19 ')#

O "Q0"! &

F $" 4 % $% &'()

R '$ &0 % .

A # ") &!

F 02 .'1% &'()

F $"4 % $% &'()

C $(9"$

N .%!! '6'1% &'()

N ()6'#0 $% &'()

@ "+ "$% &'()

F 02 .'1% &'()

O "Q0"! &')#

@ 0 .6 ' ..B ") &

@ ""+2 % 19

; " !&')#

M "&$'1 !

= "4 .(3B ") &

= " .'5 " $3

<=>? > *= "!'#) *> 4"1'6'1% &'()

M %4 *8 '&,

> "B %) &'1 *? "2

> "$5 '1" !

M %4 *8 '&,

? >= G
M %4 *8 '&, *H = = I M %4 *8 '&, *J? G E>

M %4 *8 '&,

C K FG? >
(*(*(

<)(8 ."+# " S* = % &%

M (+" .*T *G %)#0%#"

<)(8 ."+# "E2 %!"+ * = 3)%B '1

> "$5 '1" !SF $(1 "!!*M (+ " .*T

G %)#0 %#"M "&% EB (+ " .
M "&,(+(.(#3

M "&% EB " &% E

B (+ " .

M %4 *8 '&, *A # ") &

F $(6'." !

M %4 *8 '&,

<)(8 ."+# " *C %!"

> 1,"B %U!V

M %44 ')#!

M %4 *8 '&, *< = >? >

J 2 W"1 &!

M %4 * 8 '&, *L $'+

I) &" $6%1"

M %4 *8 '&,

> 4 "1 '% .&3 *> &($"!

M %4 *8 '&,

? >O @

M %4 *8 '&,

? > EN= G

<=>? > *F $(1"!!" !

; , $"%+ !

M %) %# "B ") &

? ($9 6.(8

; $%)!%1 &'()!

P 0% .'&3 *(6

> " $5 '1"

> "10 $'&3

I) &" $(4 " $% &'()

; $%)!4 ($ &% &'()

@ ""+2 % 19

G '6" EN 31 ." *; %!9!

F $" 4 % $" * 6($

F 02 .'!,

F $" 4 % $" * 6($

O "Q0"! &

F 02 .'!,

O "Q0"! &

= '!1(5" $

> " ."1 &

N ()6'#0 $"

= "4 .(3

= " .'5 " $A5%'.%2 ."

N %4%2 '.'&'"!

>"$5'1"*F $(6'."

O "Q0 "!&

F $(6'."

M %!&"$*O "Q0 "!& N %)+ '+%&"*> "$5'1"!

M %!&"$

> "$5'1"U!V

N "$&'6'"+

>"$5'1"!

N()6'$B "+

>"$5'1"!

O "Q0"!&($

@""+2 %19 *%)+ S($

@0 .6'.."+ *O "Q0"!&

O "Q0 "!&($

F $(6'." *U%4 $'($ 'V

O "Q0 "!&

U+ 3)%B '1 V

F $(5'+ "$

F $(5'+ "$

F $(6'."

O "&'$"

I) &" $6%1"

*

Figure 1. KDSWS Framework

;%!9!* %$"*8"..E+".')"%&"+* !&"4!* &(* +".'5"$* 60)1&'()%.'&3* 5'%*?"2* !"$5'1"!X* %)+* &,"*<=>?>*4$(4(!"!* &,"*

6(..(8')#* 1(.."1&'()* (6* &%!9!* 6($* &,"*?"2* !"$5'1"!* .'6"E131."Y* F$"4%$"* 6($* F02.'!,X* F02.'!,X* F$"4%$"* 6($*

O"Q0"!&X* O"Q0"!&X* ='!1(5"$X* >"."1&X* N()6'#0$"X* ="4.(3X* =".'5"$X* O"&'$"X* %)+* I)&"$6%1":* * @($* %++'&'()%.*

1()&"7&*+"!'#)%&'()X*&,$"%+!*%$"*+"6')"+*%!*.%3"$!*(6*60)1&'()%.'&3*&,%&*&,"*&%!9!*0!"*&(*+".'5"$*&,"*!"$5'1"!Z*

Fig. 1. KDSWS framework.

designation, threads are defined as layers of functionality that the tasks use

to deliver the services; they address issues related to Management, Workflow,

Transactions, Quality of Service, Security, Interoperation and Feedback. This con-

text is carried into the specification to enable behavior to be tailored.

The KDSWS Design Specification addresses the “narrow scope” issue discussed

earlier by allowing the enterprise-wide data and processes needs to be stipulated for

the KDSWS Processes, as well as for the backend, middleware and user services,

November 18, 2004 14:6 WSPC/111-IJCIS 00102

452 R. Howard & L. Kerschberg

which provides a comprehensive (by addressing these backend, middleware, and

user needs as well as the end-to-end issues) and integrated (by addressing both

data and process needs) solution. The data aspects are captured in the meta-

model and are modeled by an adapted version of the Knowledge/Data Model

and Language (KDM/KDL).52 The process aspects are captured in the method-

ology and are modeled by the Knowledge-based Dynamic Services/Process Model

and Language (KDSPM/L). This separation addresses the “coupled function and

description” issue addressed earlier with regards to the shortcomings of OWL-S.

This “meta-model/process”-based approach enables an extensible framework that

provides a macro-level shell to plug-in different approaches to the facets of the

Web services life-cycle (e.g. negotiation, policy management, etc.) yet still provides

enough structure to guide implementations.

The specification can be carried from the top-level methodology down to

the instantiation level that provides a consistent chain from the design down

to the implementation of the specification. The KDSWS Specifications transi-

tion into components within the KDSWS Functional Architecture as explained in

Sec. 3.2.4.

The KDSWS Functional Architecture (KDS-FA) is comprised of the Func-

tional Federation Architecture (FFA), the Functional Agent Services Architecture

(FASA), Functional Knowledge Architecture (FKA) and Web Services Protocols.

The functional emphasis on these components originates from the need to embed

the purpose, behavior and relations within the specification via such items as the

:GOALS primitive.

3.1. KDSWS processes

The KDSWS Processes layer is comprised of Tasks and Threads that are used to

deliver functionality through Web services, and they (the Tasks and Threads) set

the context of the processes. Some authors present Web services functionality as a

stack,27,46,53 but this approach separates the activities within the life-cycle of Web

services from the functional perspective to provide a crisper set of concepts.

The Prepare for Publish process establishes the provider’s knowledge base to

use for the Web services automation by either brokering outside knowledge bases

to be mediated directly or incorporating the knowledge into the FKA. The Publish

process pulls knowledge from FKA and posts it to advertising (i.e. UDDI) and

invocation (i.e. WSDL) resources.

The Prepare for Request process introduces the concept of a “Master

Request” that represents the primary end-result that the user is requesting. The

Master Request will likely entail both atomic and composite requests for Web

services to be fulfilled. The Prepare for Request and the Request processes

mirror those of the Publish side in purpose, except they are performed from the

perspective of the request. The profiles built up from the request side need to cor-

relate to those on the publish side to enable the automated selection. However, the

November 18, 2004 14:6 WSPC/111-IJCIS 00102

A Framework for Dynamic Semantic Web Services Management 453

Plan-for-Request process is much more encapsulated than its Prepare for Publish

counterpart because of its need for faster response.

The Discover process receives the request, decomposes the Master Request if it

involves workflow steps, and finds providers’ services that match the profile of the

request, or the “Candidate Services”. The Select process differentiates amongst the

candidates generated from the Discover process to produce the “Master Services”

(“services” because iterative processing to decompose services may produce multiple

“masters” at different levels), and negotiates for acceptable terms to use the selected

Web services. The Configure process composes the services into an execution plan

that is then validated and verified for accuracy to produce “Certified Services”.

The Deploy process coordinates and confirms that the resources and the envi-

ronment are ready to produce “Confirmed Services”, and the “Fulfillment Package”

is created. The Deliver process executes the Web services, enacts the workflow, and

delivers services to fulfill the request.

With Web services still in the infancy stage, it seems strange to be talking

about the retirement issues; however, the services that a provider registers must

be viable to justify committing resources to provide the service, and prevent the

requestors from brokering obsolete services. The Retire process involves establishing

the criteria for Web service retirement, and using the feedback mechanisms to

evaluate the results against the criteria.

The Interface task fits into a different category than the life-cycle tasks pre-

viously discussed because it occurs primarily in the front-end of the life-cycle;

however, it can occur throughout the stages. The Interface task handles the

import and exporting of knowledge.

The Management layer directs the activities of the other threads. Workflow

involves the management of the steps to achieve the goals of the request, while

transactions deal with the control of the lower-level actions to maintain the ACID

(Atomicity, Consistency, Isolation and Durability) properties. Quality-of-Service

(QoS) ensures the expected performance levels of availability, quality, security, re-

sponse time and throughput54 are maintained. Security provides for authentication,

integrity, privacy and non-repudiation. Interoperation ensures that the service inte-

grates with other services and protocols. Transportation ensures that messages are

handled properly. Feedback involves keeping the requestor informed as to status

and measuring performance results of the delivery.

3.2. KDSWS design specification

The KDSWS Specification has both a data-centric and a process-centric focus. The

data requirements are captured in the meta-model, whereas the process require-

ments are captured in the methodology. Each element starts at the highest level

and cascades down the level of detail to form a hierarchy of relations between

the levels. The process elements integrate and reference elements in the data ele-

ments to form an integrated specification to ensure the elements are consistent both

November 18, 2004 14:6 WSPC/111-IJCIS 00102

454 R. Howard & L. Kerschberg

vertically and horizontally. Similar to OIL and OWL, the specification has three

levels of capabilities; the levels are named Lite, Standard and Full. This allows

providers to specify the level of complexity of the features of their services and

allows requestors to specify the level at which they which to participate.

As mentioned, the meta-model is specified via an adaptation of the

KDM/KDL,52,55 while the methodology is specified by the new, albeit exten-

sion of KDM/KDML, (KDSPM/KDSPL). The specifications correlate to the re-

spective components of the KDSWS Functional Architecture. In addition, the

KDSWS Specification provides mechanisms to map to Semantic Web and Web ser-

vices components and protocols. As a note, the items prefixed with “kdsd” denote

KDL objects involved in the flow, and items prefixed with “kdsp” denote KDSPL

objects used in the process.

3.2.1. KDSWS meta-models

Similar to the Meta-Object-Facility (MOF),56 this meta-model also establishes four

levels of metadata architecture — the meta-meta-model, meta-model, model, and

information. The meta-meta-model shown in Fig. 2 displays the links relating the

RDF/RDFS and OWL data types (because OWL uses the RDF Schema data

structures).12 Some of the “attributes” in the meta-model in Figs. 3 and 4 are

shown at an abstract level to provide context for the class. The term meta-model

will herein refer to both the meta-meta-model and the meta-model together.

The elements contained in the meta-model come from various sources such as

the WSMF, OWL-S, Sheth57 and Web Services Architecture Usage Scenarios,58

and they represent the essential concepts that are necessary to model the functions

of Semantic Web Services. The meta-model is the base for data objects that will be

infused throughout the specification. The semantics used within the specification

may directly from the structures in the meta-model, or may be derived via rules in

the heuristics.

The meta-model focuses on developing the “building blocks” (i.e. constraints,

preferences, profiles, capabilities, etc.) versus focusing on the higher-level and vis-

ible, finished products that are aggregated (e.g. a service, a profile, or request)

on which some approaches place their primary attention (i.e. “conceptual ambi-

guity”, as it relates to OWL-S shortcomings mentioned in the Introduction, is the

result). This “building block” approach makes the framework elements composable,

reusable and extensible. The meta-model distinctly defines process-based (e.g. task,

thread, event as shown in Fig. 3) and resource-based (e.g. service, agent, protocol as

shown in Fig. 4) classes in order to clarify the concepts involved in delivering Web

services functionality. The lower level “building blocks” can easily be aggregated

to compose the higher-level elements. By making entities such as constraints and

preferences a first-level super-class, the benefits of generalization/specialization are

achieved for these components instead of being buried within attribute specifica-

tions. In the case of a composite service (one that calls other services), the provider

November 18, 2004 14:6 WSPC/111-IJCIS 00102

A Framework for Dynamic Semantic Web Services Management 455

 11

kdsdRole

kdsdResource

takes on

kdsdTask

kdsdThread

rdf:Property

rdfs:Resource

subClassOf

su
bC

la
ss

O
f

rdfs:Class

subClassOf

kdsdPattern

u
se

s
kdsdPolicy

kdsdConstraint

kdsdGoal

kdsdPreference

kdsdAnamoly

kdsdRepository

kdsdOperation

g
u
id

e
s

dictates

defines handlingof

provides context
for

controls Use of

guides

selection of

g
u
id

e
s

u
se

 o
f

s
u

b
C

la
s
s
O

f

su
b
C

la
ssO

f

subC
lassO

f

kdsdDescription

subClassOf

lim
its

pro
vid

es
co

nte
xt

fo
r

kdsdEvent triggers

kdsdCapacity

has

subClassOf

kdsdProfile

has

described by

uses

runs through

u
s
e
s

kdsdHistory
has

!
Figure 2. Meta-Meta-Model

"#$!$%$&$'()!*+'(,-'$.!-'!(#$!&$(,/&+.$%!*+&$!01+&!2,1-+3)!)+31*$)!)3*#!,)!(#$!45678!94:/58!5#$(#!

;<=>!,'.!4$?!5$12-*$)!@1*#-($*(31$!A),B$!5*$',1-+)!;<C>8!,'.!(#$D!1$E1$)$'(!(#$!$))$'(-,%!*+'*$E()!(#,(!,1$!

'$*$)),1D!(+!&+.$%!(#$!03'*(-+')!+0!5$&,'(-*!4$?!5$12-*$)F!!"#$!&$(,/&+.$%!-)!(#$!?,)$!0+1!.,(,!+?G$*()!

(#,(!H-%%!?$!-'03)$.!(#1+3B#+3(!(#$!)E$*-0-*,(-+'F!!"#$!)$&,'(-*)!3)$.!H-(#-'!(#$!)E$*-0-*,(-+'!&,D!.-1$*(%D!

01+&!(#$!)(13*(31$)!-'!(#$!&$(,/&+.$%8!+1!&,D!?$!.$1-2$.!2-,!13%$)!-'!(#$!#$31-)(-*)F!

"#$! &$(,/&+.$%! 0+*3)$)! +'! .2%+E-'B! (#$! I?3-%.-'B! ?%+*J)K! L-F$F8! *+')(1,-'()8! E1$0$1$'*$)8! E1+0-%$)8!

*,E,?-%-(-$)8! $(*FM! 2$1)3)! 0+*3)-'B! +'! (#$! #-B#$1/%2%! ,'.! 2-)-?%$8! 0-'-)#$.! E1+.3*()! (#,(! ,1$! ,BB1$B,($.!

L$FBF8! ,!)$12-*$8! ,! E1+0-%$8! +1! 1$N3$)(M! +'! H#-*#!)+&$! ,EE1+,*#$)! E%,*$! (#$-1! E1-&,1D! ,(($'(-+'! L-F$F8!

O*+'*$E(3,%!,&?-B3-(DP8!,)!-(!1$%,($)!(+!94:/5!)#+1(*+&-'B)!&$'(-+'$.!-'!(#$!Q'(1+.3*(-+'8!-)!(#$!1$)3%(MF!!

"#-)!I?3-%.-'B!?%+*JK!,EE1+,*#!&,J$)!(#$!01,&$H+1J!$%$&$'()!*+&E+),?%$8!1$3),?%$!,'.!$R($')-?%$F!!"#$!

&$(,/&+.$%!.-)(-'*(%D!.$0-'$)!E1+*$))/?,)$.!L$FBF8!(,)J8!(#1$,.8!2'(!,)!)#+H'!-'!7-B31$!SM!,'.!1$)+31*$/

?,)$.!L$FBF8!)$12-*$8!,B$'(8!E1+(+*+%!,)!)#+H'!-'!7-B31$!TM!*%,))$)!-'!+1.$1!(+!*%,1-0D!(#$!*+'*$E()!-'2+%2$.!

-'! .$%-2$1-'B!4$?!)$12-*$)! 03'*(-+',%-(DF! ! "#$! %+H$1! %$2$%! I?3-%.-'B! ?%+*J)K! *,'! $,)-%D! ?$! ,BB1$B,($.! (+!

+&E+)$! (#$!#-B#$1/%$2$%! $%$&$'()F! !UD!&,J-'B! $'(-(-$)!)3#! ,)! *+')(1,-'()! ,'.!E1$0$1$'*$)! ,! 0-1)(/%2%!

)3E$1/*%,))8!(#$!?$'$0-()!+0!B$'$1,%-V,(-+'W)E$*-,%-V,(-+'!,1$!,*#-2.!0+1!(#$)$!*+&E+'$'()!-')($,.!+0!?$-'B!

?31-$.!H-(#-'!,((1-?3($!)E$*-0-*,(-+')F!!Q'!(#$!*,)$!+0!,!*+&E+)-($!)$12-*$!L+'$!(#,(!*,%%)!+(#$1!)$12-*$)M8!(#$!

E1+2-.$1! -)! ,%)+! ,! 1$N3$)(+1! -'! (#$!),&$! R*3(-+'!)(1$,&F! ! "#$!)3E$1/*%,))! %2%! 03'*(-+')! #,'.%$! (#$!

+')(1,-'()!+1!E1$0$1$'$)!(#,(!,1$!*+&&+'!(+!?+(#!(#$!1$N3$)(+1WE1+2-.$18!H#-%$!(#$!)E$*-,%-V$.!03'*(-+')!

,1$!3)$.! ,)! (#$!)$12-*$! (1,')-(-+')!?$(H$$'! 1+%$)! L-F$F8! 1$N3$)(+1! ,'.!E1+2-.$1MF! !UD! *1$,(-'B! (#$!?3-%.-'B!

?%+*J)!,(!(#$!&$(,/&+.$%!%$2$%8!-(!$',?%$)!'$H!*+&E+'$'()!(+!?$!-'*+1E+1,($.!&3*#!&+1$!$,)-%DF!

"#$! 0+%%+H-'B! .-)*3))-+'! $RE%,-')! (#$! &,G+1! $%$&$'()! +0! (#$! &$(,/&+.$%F! ! J.).X+%-*D! +?G$*()! *,E(31$!

J'+H%$.B$! ,?+3(!)3*#! -($&)! ,)! @1(-*%$)! +0! 7$.$1,(-+'! L-F$F8! G+-'-'B! ,'.! .-)?,'.-'BM8!)$12-*$! %2%!

,B1$$&$'()8!)$*31-(D! E+%-*-$)! ,'.! E,D&$'(W0$$! E+%-*-$)F! ! J.).Y$E+)-(+1D! E%,*$)! .,(,!)(+1$)! -'(+!)3*#!

,($B+1-$)! ,)! J.).Z'+H%$.B$5+31$! L-F$F8! [6:! \,(,?,)$M8! J.).X,*J,B$! L-F$F8! 73%0-%%&$'(! X,*J,B$M8!

J.).Y$B-)(1D! L-F$F8! A\\Q8! 45\:MF! ! J.).@'+&,%D! -)! (#$!)3E$1/*%,))! 0+1! J.).]R*$E(-+'8!

J.).^+'(1,-'(_-+%,(-+'!,'.!J.).]11+1F!!J.).]2$'(!.$0-'$)!+**311$'*$)!(#,(!)#+3%.!(1-BB$1!)+&$!E1+*$))-'B!

(+!*+&&$'*$8!,'.!!!"H+!E+))-?%$!)3?*%,))$)!+0!J.).]2$'(!,1$!J.).53?)*1-E(-+'!,'.!J.).5$')+1F!!!

Fig. 2. Meta-meta-model.

is also a requestor in the same execution stream. The super-class level functions han-

dle the constraints or preferences that are common to both the requestor/provider,

while the specialized functions are used as the service transitions between roles (i.e.

requestor and provider). By creating the building blocks at the meta-model level,

it enables new components to be incorporated much more easily.

The following discussion explains the major elements of the meta-model.

kdsdPolicy objects capture knowledge about such items as Articles of Federa-

tion (i.e. joining and disbanding), service level agreements, security policies and

payment/fee policies. kdsdRepository places data stores into such categories as

kdsdKnowledgeSource (i.e. XML Database), kdsdPackage (i.e. Fulfillment Pack-

age), kdsdRegistry (i.e. UDDI, WSDL). kdsdAnomaly is the super-class for

kdsdException, kdsdContraintViolation and kdsdError. kdsdEvent defines occur-

rences that should trigger some processing to commence, and two possible sub-

classes of kdsdEvent are kdsdSubscription and kdsdSensor.

kdsdTask is the super-class for kdsdPrepare, kdsdPublish, kdsdRequest,

kdsdDiscover, kdsdSelect, kdsdConfigure, kdsdDeploy, kdsdDeliver, kdsdRetire,

and kdsdInterface. kdsdPrepare is combined with both the kdsdPublish and

kdsdRequest tasks because both tasks have a preparation task. kdsdDiscover,

kdsdSelect and kdsdConfigure aggregate to kdsdBroker. kdsdOperation are atomic

functions that carry out the purpose of a step, and can specify a process object,

KDL method, or manual intervention that is needed.

N
ov

em
b
er

1
8
,
2
0
0
4

1
4
:6

W
S
P

C
/
1
1
1
-IJ

C
IS

0
0
1
0
2

4
5
6

R
.
H

o
w
a
rd

&
L
.
K

ersch
berg

 12

!"#$%&'()*#+,'-,).#"

/&(&0!'"1,%#+
/&(&2#+&%,%#+

/&(&31+&4%+5

/&(&6$'+,

/&(&7'+(#" /&(&789(*"%!,%#+ /&(&7*:'&84'
8('(

!"#
$%&
'()*

#+,
'-,
).#"

"8+(),:"#85:

58%&'(

;"%55'"(

&%*,1,'(

&'.%+'():1+&4%+5)#.

8(
'(

8('(

/&(&;:"'1& /&(&<1,,'"+

/&(&7,'!(

/&(&='(#8"*'(

/&(&7,1,'

/&(&>#"/.4#?

/&(&;"1+(1*,%#+;@!'

/&(&A1-;%B'

/&(&;"1+(1*,%#+ /&(&C07/&(&A1+15'B'+,

/&(&7'*8"%,@D'$'4

/&(&E8,:'+,%*1,%#+

/&(&E8,:#"%F1,%#+

/&(&G#+H='!8&%1,%#+

/&(&6+*"@!,A',:#&

/&(&7%5+1,8"'7?%,*:

/&(&7'*8"%,@

/&(&I+,'"#!'"1,%#+D'$'4

/&(&D1+5815'

/&(&I+,'"#!'"1,%#+

/&(&A'&%1,%#+

/&(&7,"1,'5%* /&(&E((',

/&(&J148'2:1%+

/&(&;"1+(!#",1,%#+A#&'

/&(&;"1+(!#"1,%#+

/&(&G',?#"/ /&(&A'((15'

/&(&K''&91*/

/&(&A',"%* /&(&='(!#+('

/&(&=',"@ /&(&='(84,

/&(&;%B'#8, /&(&E4,'"+1,%$'

<"'('+,1,%#+L

<"#*'((L)M1,1

/&(&=1,%+5

/&(&7'1"*:=',8"+D%B%

,

/&(&J0<1"B(
/&(&IB!#",

/&(&6-!#", /&(&A1!

/&(&6+&<#%+,

/&(&7,#"15';@!'

/&(&='!#(%,#"@

/&(&<'"(%(,1+*'G''&(

/&(&N+#?4'&5'7#8"*' /&(&='5%(,"@

/&(&<1*/15';@!'

/&(&>#"/.4#?

/&(&7,1,'I+.#

/&(&21,14#5I+.#

/&(&<1*/15'

/&(&6+&<#%+,

/&(&K8+*,%#+<#%+, /&(&21,14#5

/&(&2#+$'",7#8"*'

/&(&2#+$'",;1"5',

/&(&7#8"*'2#B!#+'+,

/&(&2#+$'",0!'"1,#"

/&(&;1"5',2#B!#+'+,

/&(&2#+$'",A1!(

/&(&<#4%*@

/&(&E#K

/&(&7'"$%*'O81"1+,''(

/&(&7DE

/&(&7DE;@!'

/&(&7DE=1+5'

/&(&7DE

(8!!#",'&

9@

/&(&;1(/

/&(&<894%(:

/&(&M'.%+%,%#+;@!'

/&(&='P8'(,E?1"'+'((

/&(&='P8'(,

/&(&<"'!1"'

/&(&M%(*#$'" /&(&7'4'*, /&(&2#+.%58"' /&(&M'!4#@ /&(&M'4%$'" /&(&=',%"'

/&(&Q"#/'"
/&(&I+,'".1*'

/&(&2#+&%,%#+

/&(&31+&4%+5

/&(&E+#B14@

/&(&6-*'!,%#+ /&(&2#+(,"1%+,J%#41,%#+ /&(&6""#"

!"#"$%

O'+'"14%F1,%#+R

7!'*%14%F1,%#+
E55"'51,%#+

A',1HA',1HA#&'4

64'B'+,

A',1HB#&'4)64'B'+,

/&(&='(#8"*'IM

/&(&='(#8"*';@!'

/&(&I&'+,%,@

/&(&='(#8"*'

)
Figure 3. KDSWS Process-based Meta-Model Classes

/&(&;1(/) %() ,:') (8!'"H*41(() .#") /&(&<"'!1"'L) /&(&<894%(:L) /&(&='P8'(,L) /&(&M%(*#$'"L) /&(&7'4'*,L)

/&(&2#+.%58"'L) /&(&M'!4#@L)/&(&M'4%$'"L) /&(&=',%"'L) 1+&)/&(&I+,'".1*'S)) /&(&<"'!1"') %() *#B9%+'&)?%,:)

9#,:) ,:') /&(&<894%(:) 1+&) /&(&='P8'(,) ,1(/() 9'*18(') 9#,:) ,1(/() :1$') 1) !"'!1"1,%#+) ,1(/S)) /&(&M%(*#$'"L)

/&(&7'4'*,)1+&)/&(&2#+.%58"')155"'51,'),#)/&(&Q"#/'"S))/&(&0!'"1,%#+)1"')1,#B%*).8+*,%#+(),:1,)*1""@)#8,)

,:') !8"!#(') #.) 1) (,'!L) 1+&) *1+) (!'*%.@) 1) !"#*'(() #9T'*,L) NMD) B',:#&L) #")) B1+814) %+,'"$'+,%#+) ,:1,) %()

+''&'&S))

/&(&;:"'1&) 1+&) /&(&<1,,'"+) 1"') 9#,:) (8!'"H*41(('() .#") ,:') ,:"'1&) #9T'*,() 9'*18(') ,:"'1&() 8(') ?'44H

'(,194%(:'&) !1,,'"+(S)) /&(&A1+15'B'+,) %() #"51+%F'&) 9@) ,:') ,:"'') B1+15'B'+,) 4'$'4() 1((#*%1,'&) ?%,:)

J%",814) 0"51+%F1,%#+(U) /&(&7,"1,'5%*L) /&(&E((',L) #") /&(&J148'H2:1%+S)) E+#,:'") (89*41(() #.)

/&(&A1+15'B'+,)%()/&(&J0<1"B(),#)(8!!#",)!1"1B','"().#"),:')J%",814)0"51+%F1,%#+S))/&(&>#"/.4#?)1+&)

/&(&;"1+(1*,%#+) *##"&%+1,') 1+&) *#+,"#4) ,:') (,'!() 1+&) #!'"1,%#+() #.) ,:') !"#*'((S)) /&(&C#7) VC814%,@) #.)

7'"$%*'W)*#+$'@(),:'),%B'L)1**8"1*@L)!"%*%+5)4'$'4()1+&),:"#85:!8,),:1,)1"')&''B'&),#)9')1**'!,194')9@)144)

!1",%'(S))/&(&7'*8"%,@)*1!,8"'()+''&().#")('*8"%,@)4'$'4L)18,:'+,%*1,%#+L))18,:#"%F1,%#+)1+&)+#+H"'!8&%1,%#+S))

/&(&I+,'"#!'"1,%#+) %() 1) !%$#,14) *41(() ,#) :1+&4') (8*:) !"#!'",%'() 1() /&(&I+,'"#!'"1,#+D'$'4) V%S'SL) M1,1L)

<"'('+,1,%#+) #") <"#*'((W) #") /&(&D1+5815'S)) /&(&I+,'"#!'"1,%#+) 14(#) :1+&4'() ,:') B'&%1,%#+) +''&() 8+&'")

/&(&A'&%1,%#+L) %B!#",) +''&() 8+&'") /&(&IB!#",L) '-!#",) +''&() 8+&'") /&(&6-!#",L) 1+&)B1!!%+5) 9',?''+)

#9T'*,() 8+&'") /&(&A1!S))0+') !1",%*841") 1,,"%98,') %() ,:')/&(&A'&%1,%#+;@!'L)?:%*:) *#+$'@()?:',:'") ,:')

B'&%1,%#+) %() 1,) 1) &1,1) (,"8*,8"'L) 98(%+'(() 4#5%*L)B'((15') '-*:1+5') !"#,#*#4) #") ('"$%*') %+$#*1,%#+) 4'$'4S))

/&(&;"1+(!#",1,%#+)%()#"51+%F'&)9@)/&(&G',?#"/)1+&)/&(&A'((15'L)1+&):1+&4')(8*:)'4'B'+,()1()%+$#/'&)

>'9)('"$%*')!"#-@L)!#",(L) ,"1+(!#",)9%+&%+5L)"',"@)"84'()1+&)4%B%,(L)1+&)"#8,%+5S))/&(&;"1+(!#",1,%#+A#&')

%+&%*1,'() ?:%*:) 5'+'"14) +',?#"/() 1"') 1$1%4194') (8*:) 1() '-,"1+',L) %+,"1+',) 1+&) %+,'"+',S)) /&(&K''&91*/)

1!,8"'() /+#?4'&5') 19#8,)B',"%(L) "'(!#+('() ,#) ,:') "'P8'(,#") 1+&) "1,%+5() #.) ,:') ('"$%*'(S) /&(&='(!#+(')

*#$'"()1)!#((%94')"',"@L)"'(84,L),%B'#8,)#")14,'"+1,%$'S)

Fig. 3. KDSWS process-based meta-model classes.

N
ov

em
b
er

1
8
,
2
0
0
4

1
4
:6

W
S
P

C
/
1
1
1
-IJ

C
IS

0
0
1
0
2

A
F
ra

m
ew

o
rk

fo
r

D
y
n
a
m

ic
S
em

a
n
tic

W
eb

S
ervices

M
a
n
a
gem

en
t

4
5
7

 13

!"#"$%#&'()*(+,-)'+.("%#- /- #0)%'1&2/##- #*'0&*0'%- 3+'- "%#&'()*(.%-)'+)%'*(%#4- - !"#"5(#(6(2(*7- (#- 0#%"- *+-

"%*%'8(,%-9:%'%-/-&+8)+,%,*-(#-8/"%-/./(2/62%-*+-#%%-+'-0#%4-!"#";2/&!6+<-)'+)%'*(%#-/'%-)'+)%'*(%#-*:/*-

+*:%'-#%'.(&%#-#:+02"-*7)(&/227-,+*-6%-&+,&%',%"-9(*:-(,-+'"%'-*+-0#%-*:%-=%6-#%'.(&%->-(*-&+,#("%'#-*:%-=%6-

#%'.(&%- /#- /- ?62/&!- 6+<@- 9(*:- '%#)%&*- *+- *:%#%-)'+)%'*(%#4- - A+,*'/#*%"- 9(*:- !"#";2/&!6+<-)'+)%'*(%#B-

!"#"C'/76+<-)'+)%'*(%#- /'%-)'+)%'*(%#- *:/*- 8(D:*- 6%- 0#%302- 3+'- '%E0%#*+'#- *+- #%%- /6+0*- *:%-)'+.("%'4--

!"#"F/,/D%/6(2(*7-(#-/-!%7-)'+)%'*7-*:/*-3/22#-(,*+-*:(#-&/*%D+'74-

!"#"A/)/6(2(*(%#- (#- /- .%'7- "(.%'#%- /,"-)(.+*/2- &2/##- *:/*- (#- /- #0)%'1&2/##- 3+'- #0&:- (*%8#- /#-

!"#"G,.+&/*(+,H7)% I(4%4B #7,&:'+,+0#- +'- /#7,&:'+,+0#J- +'- !"#"K2/*3+'8- IK$LB- M%'.%'B- +'- $%#!*+)J4--

!"#"$+&08%,*-:+2"#- *:%-$062(,1A+'%-F%*/"/*/-N2%8%,*-M%*- I(4%4B-H(*2%B-O/8%B-$%#&'()*(+,B-$/*%B-H7)%B-

%*&4J- PQRS- /#-9%22- /#- #7,*/<- /,"-)'+*+&+24- -T,%-)/'*(&02/'-/**'(60*%-+3- (,*%'%#*- (#- *:%-!"#"A/)/6(2(*7U%.%2-

9:(&:- "%#&'(6%#- 9:%*:%'- *:%- '%#+0'&%-)/'*(&()/*%#- /*- /- !"#"U(*%B- !"#"M*/,"/'"- +'- !"#"V022- 2%.%24--

!"#"M)%&(/2(W/*(+,-&+,.%7#- *:%-)'(8/'7- 3+&0#-+3- *:%-+6X%&*- #0&:-/#-,%D+*(/*(+,-+'-&++'"(,/*(+,-/#- (,- *:%-

&/#%-+3-/D%,*#4---

!"#"L22+&/*(+,H7)%

!"#"A/)/&(*7

"%#&'(6%"-67
*/!%#-+,

D0("%#-0#%-+3

D0("%#-#%2%&*(+,-+3

&+,*'+2#-0#%-+3

!"#"K'+3(2%:/#

2(8(*%"-67
!"#"K'%3%'%,&%

!"#";0"D%*IYJ

!"#"V%%IKJ

!"#"K'(&%

!"#"Z0/2(*7Y/*(,D

!"#"Z0/2(*7

!"#"$%2(.%'7H(8%

!"#"H0',/'+0,"

!"#"$%2(.%'7

!"#"H+2%'/,&%

!"#"V2%<(6(2(*7

!"#"$%.(/*(+,L22+9%"

!"#"L&&0'/&7

!"#"H%'8#

!"#"K/78%,*

!"#"K'(./&7

!"#"G,)0*5/20%#

!"#"$+8/(,

!"#"T0*)0*5/20%#

!"#"Y/,D%

!"#"A+,#*'/(,*G$

!"#"A+,#*'/(,*Y/,D%

!"#"A+,#*'/(,*

!"#"$%

C%,%'/2(W/*(+,[

M)%&(/2(W/*(+,
LDD'%D/*(+,

F%*/1F%*/1F+"%2

N2%8%,*

F%*/18+"%2-N2%8%,*

!"#"Y+2%

!"#"M%'.(&%A:/(, !"#"M0))27A:/(,

!"#"C2+6/2 !"#"V'+,*N,"

!"#"K'+.("%' !"#"Y%E0%#*+'

!"#"N,*%')'(#% !"#"M0))2(%'

!"#"$+8/(, !"#"K/'*,%'

!"#"LD%,&7

!"#"M(*0/*(+,

!"#"\'D%,&7

!"#"M&%,/'(+!"#"Y%E0%#*K'+3(2%

!"#"M0&&%##302;'+!%'M%##(+,#

!"#"L**%8)*%";'+!%'M%##(+,#

!"#"](#*+'7

:/#

!"#"O/8%

!"#"$%#&'()*(+,H7)%

!"#"5(#(6(2(*7

!"#"F/)T6X%&*

!"#"M*'0&*0'%H7)%

!"#"O/8%M)/&%

!"#"$%#&()*(+,

!"#"F/,/D%/6((*7

!"#"K%"(D'%%

!"#"K'+.%,/,&%

!"#"C'/76+<

!"#";2/&!6+<!"#"M)%&(/2(W/*(+,

!"#"5%'#(+,

!"#"$+&08%,*

!"#"A/)/6(2(*7U%.%2

!"#"A/)/6(2(*(%#

M7,*/&*(&B

M%8/,*(&B-+'

K'/D8/*(&

!"#"\$$G !"#"=M$U

!"#"T=Û M

!"#"MTLK !"#"$LY

!"#"A:+'%+D'/):7

!"#"Y%#+0'&%G$

!"#"Y%#+0'&%H7)%

!"#"G"%,*(*7

!"#"Y%#+0'&%

!"#"K'+*+&+2 !"#"LD%,* !"#"=%6M%'.(&%

!"#"F+"%H7)%

!"#"F+"%

!"#"F%*:+"H7)%

!"#"F%*:+"

!"#"K/'%,*

!"#"M(62(,D

!"#"$%)%,"%,&(%#

!"#"K/'*,%'

:/#

!"#"T,*+2+D7

!"#"K0')+#%

!"#"C+/2

!"#"K'%A+,"(*(+, !"#"K+#*A+,"(*(+,

!"#"Y02%H7)%

!"#"Y02%

!"#"L0*:+'(*7

-
Figure 4. KDSWS Resource-based Meta-Model Classes

!"#"](#*+'7-#*+'%#-*:%-)/#*-/&*(.(*7-+3-/-'%#+0'&%B-9:(2%-!"#"A/)/&(*7-&+,.%7#-*:%-/./(2/6(2(*7-+3-'%#+0'&%#-

(,- *:%- 3+'8- +3- A/)/&(*7H7)%- I$(#&'%*%A/)/&(*7- +'- A+,*(,0+0#A/)/&(*7J4- - !"#"L22+&/*(+,H7)%- &+,.%7#-

9:%*:%'- /,- /22+&/*(+,- (#- &+,#08/62%- +'- '%0#/62%4- - !"#"K'+3(2%- (#- /,- /DD'%D/*(+,- +3- *:%-)'+)%'*(%#- /,"-

+6X%&*#-9(*:(,-*:%-3'/8%9+'!4--T,%-#0&:-)'+3(2%-(#-!"#"Y%E0%#*K'+3(2%-)'+3(2%#-'%E0%#*#-#+-*:/*-/D%,*#-&/,-

6(,- '%E0%#*#-/#- *:%7-/''(.%4-!"#"M&%,/'(+-"%)(&*#- *:%- #(*0/*(+,-6%:(,"- *:%-'%E0%#*4- -M&%,/'(+#-/'%-&+8(,D-

(,*+-*:%-2(*%'/*0'%-/#-+3-2/*%B-/,"-/,-%</8)2%-+3-/-:0''(&/,%-#&%,/'(+-(#-"%8+,#*'/*%"-(,-*:%-M%&*(+,-_4--

H:%-)'(8/'7-30,&*(+,-+3-!"#"C+/2-(#-*+-&/)*0'%-*:%-)0')+#%-+3-/,-+6X%&*4--G*-/2#+-#%'.%#-/#-/,-/DD'%D/*(+,-+3-

!"#"K+#*A+,"(*(+,B-!"#"K'%A+,"(*(+,B-!"#"Y02%-6%&/0#%-*:%7-,%%"-*+-6%-#%*-(,-*:%-&+,*%<*-+3-/-"%3(,(*(.%-

)0')+#%4-

Fig. 4. KDSWS resource-based meta-model classes.

November 18, 2004 14:6 WSPC/111-IJCIS 00102

458 R. Howard & L. Kerschberg

kdsdThread and kdsdPattern are both super-classes for the thread objects be-

cause threads use well-established patterns. kdsdManagement is organized by the

three management levels associated with Virtual Organizations — kdsdStrategic,

kdsdAsset, or kdsdValue-Chain. Another subclass of kdsdManagement is

kdsdVOParms to support parameters for the Virtual Organization. kdsdWorkflow

and kdsdTransaction coordinate and control the steps and operations of

the process. kdsdQoS (Quality of Service) conveys the time, accuracy, pric-

ing levels and throughput that are deemed to be acceptable by all parties.

kdsdSecurity captures needs for security level, authentication, authorization and

non-repudiation. kdsdInteroperation is a pivotal class to handle such properties

as kdsdInteroperatonLevel (i.e. Data, Presentation or Process) or kdsdLanguage.

kdsdInteroperation also handles the mediation needs under kdsdMediation,

import needs under kdsdImport, export needs under kdsdExport, and map-

ping between objects under kdsdMap. One particular attribute is the

kdsdMediationType, which conveys whether the mediation is at a data struc-

ture, business logic, message exchange protocol or service invocation level.

kdsdTransportation is organized by kdsdNetwork and kdsdMessage, and han-

dle such elements as invoked Web service proxy, ports, transport binding, retry

rules and limits, and routing. kdsdTransportationMode indicates which general

networks are available such as extranet, intranet and internet. kdsdFeedback

captures knowledge about metrics, responses to the requestor and ratings of the

services. kdsdResponse covers a possible retry, result, timeout or alternative.

kdsdDescription provides a super-class structure for descriptive properties.

kdsdVisibility is used to determine where a component is made available to see or

use. kdsdBlackbox properties are properties that other services should typically not

be concerned with in order to use the Web service — it considers the Web service as

a “black box” with respect to these properties. Contrasted with kdsdBlackbox prop-

erties, kdsdGraybox properties are properties that might be useful for requestors

to see about the provider. kdsdManageability is a key property that falls into this

category.

kdsdCapabilities is a very diverse and pivotal class that is a super-class for such

items as kdsdInvocationType (i.e. synchronous or asynchronous) or kdsdPlatform

(PDA, Server, or Desktop). kdsdDocument holds the Dublin-Core Metadata

Element Set (i.e. Title, Name, Description, Date, Type, etc.)59 as well as syn-

tax and protocol. One particular attribute of interest is the kdsdCapabilityLevel

which describes whether the resource participates at a kdsdLite, kdsdStandard or

kdsdFull level. kdsdSpecialization conveys the primary focus of the object such as

negotiation or coordination as in the case of agents.

kdsdHistory stores the past activity of a resource, while kdsdCapacity conveys

the availability of resources in the form of CapacityType (DiscreteCapacity or

ContinuousCapacity). kdsdAllocationType conveys whether an allocation is con-

sumable or reusable. kdsdProfile is an aggregation of the properties and objects

within the framework. One such profile is kdsdRequestProfile profiles requests so

November 18, 2004 14:6 WSPC/111-IJCIS 00102

A Framework for Dynamic Semantic Web Services Management 459

that agents can bin requests as they arrive. kdsdScenario depicts the situation be-

hind the request. Scenarios are coming into the literature as of late, and an example

of a hurricane scenario is demonstrated in Sec. 4.

The primary function of kdsdGoal is to capture the purpose of an object. It

also serves as an aggregation of kdsdPostCondition, kdsdPreCondition, kdsdRule

because they need to be set in the context of a definitive purpose.

The major subclasses of kdsdResource are kdsdAgent, kdsdCatalog,

kdsdProtocol, kdsdService, kdsdServiceChain, kdsdSupplyChain, kdsdPartner. The

various protocols are captured in the kdsdProtocol. kdsdService breaks down

into kdsdMode to capture whether a service offers RPC or Document messaging.

kdsdMethod conveys whether the function is behind a Web service or not (i.e. as in

the case of an agent). kdsdRole are split in kdsdServiceChain and kdsdSupplyChain

subclasses, where kdsdServiceChain describes elements in the technical architec-

ture (i.e. the service itself) and the kdsdSupplyChain describes in the organization

architecture.

kdsdConstraint allows the restriction of domain (inputs) and ranges (out-

puts) for objects, while kdsdPreference captures the manner in which providers

and requestors prefer to do business. kdsdAccuracy, kdsdDelivery, kdsdFlexibility,

kdsdPayment, kdsdPrice, kdsdQuality, kdsdPrivacy are subclasses of both

kdsdConstraint and kdsdPreference. kdsdPreference because their attributes and

behavior can be applied to either generalization.

3.2.2. KDSWS methodology

The top-level processes, as shown in Fig. 5, correlate directly to the Tasks identified

in the framework — Prepare (Publish and Request are consolidated for presentation

efficiency), Publish, Request, Discover, Select, Configure, Deploy and Deliver. The

methodology seemingly duplicates with the tasks in the meta-model. To explain

the necessary overlap, the meta-model elements identify the data needs for the task

in the life-cycle, whereas the methodology identifies the process and makes use of

the meta-model elements.

The diagram delimits the tasks (e.g. Prepare, Publish, Request, etc.) by the

vertical separator lines. The methodology also shows the processes within the

context of the KDSWS Threads. Notice that the majority of activity takes place in

the management thread where policies can be monitored throughout the life-cycle

of the delivery. Specialized management is distributed throughout the threads as

needed. Also notice that the bulk of the process reside at either the front and back

of the life-cycle, which depicts a loosely-coupled asynchronous environment.

The flow of the KDSPL (process) objects is identified via the solid lines, while

the dashed not-so-solid lines indicate specialized processes occurring with the par-

ent process to which it is connected. In order to provide a concise view of the

overall methodology, a general chronology of events is assumed, and the temporal

and cyclical facets of the life-cycle are discussed rather than diagramed. As the

November 18, 2004 14:6 WSPC/111-IJCIS 00102

460 R. Howard & L. Kerschberg

 15

!"#"$%&'())*+,)-,.%/,)0#1213145)!#13,55)3#,"2,5)")'"!)1.)2+,)"6"%4"74,)8$5$9!,#"2%1/5)"/$)2+,%#)5:!!1#2,$)

8$5$0#1213145())*+,)-,.%/,)*#"/5!1#2"2%1/);,+%34,5)!#13,55)3#,"2,5)")'"!)1.)2+,)"6"%4"74,)1!,#"2%1/5)<%2+)

2+,%#) 5:!!1#2,$) 8$5$*#"/5!1#2"2%1/=1$,5) >,(&(?) ,@2#"/,2?) %/2#"/,2) "/$) %/2,#/,2A()) *+,) -,.%/,) B,,$7"38)

C2#:32:#,5) !#13,55) $,.%/,5) 8$5$C2"2:5*,'!4"2,5?) 8$5$=,2#%3D1"45?) 8$5$E"2%/&C2#:32:#,5) "/$)

8$5$E,5:425*,'!4"2,5?)<+%3+)"#,)/12)5+1</)%/)2+,)',2"F'1$,4()*+,5,),@,'!4%.G)34"55,5):/$,#)8$5$0#1.%4,)

2+"2)!#16%$,)%/.#"52#:32:#,)5:!!1#2).1#)2+,)1!2%'%H"2%1/)1.)")5G52,'()

 Knowledge-based Dynamic Semantic Web Services (KDSWS) Framework Methodology

-,4%6,#0:74%5+ I1/.%&:#,E,J:,520#,!"#, -,!41GC,4,32-%5316,#

B
,,
$
7
"3
8

*
#"
/
5!
1
#2
"2
%1
/

K/
2,
#1
!
,#
"
2%
1
/

C
,3
:
#%
2G

L
:
"4
%2
G
)1
.

C
,#
6
%3
,

*
#"
/
5"
32
%1
/

M
1
#8
.4
1
<

=
"/
"&
,'

,/
2

Define

QoS

Parms

Produce

Selected

Services

Secure

Transactions

Traverse

Workflow

Configure

Transaction

Define

Transaction

Controls

Transform & Supply

Knowledge

Manage

Execution

Manage

SLAs

Publishing

Monitor & Adjust Brokering

Components

Produce &

Rank Search

Results

Define

Feedback

Structures

Enact

Workflow

Establish

AoF

Define

Security

Paradigms

Receive

Request

Manage

Payloads

Request

Planning

Decompose

Process

Monitor & Measure

Fulfillment

Issue

Master

Request Deploy

Services

Integrate w/

Other Services

and Protocols

Execute

Transaction

Invoke

Execution

Certify &

Sychronize

Services

Define

Transportation

Vehicles

Deliver Functionality &

Provide Feedback

Define

Protocols

Designate

Workflow

Patterns

N,&,/$

KDSPL

Process

Methodology Flow

Simultaneous Process

)
Figure 5. KDSWS Top-level Methodology

*+,) *#"/5.1#') O) C:!!4G) P/1<4,$&,) !#13,55) +"/$4,5) 2#"/5.1#'%/&) "/$) 5:!!4G%/&) 8/1<4,$&,) >%(,(?)

8/1<4,$&,)"451)%/34:$,5)$"2")"/$)%/.1#'"2%1/A)%/21)")5,'"/2%3).1#'())*+,)8/1<4,$&,)'"G)7,)521#,$)%/)")

5,'"/2%3).1#')>,(&(?)Q=N)$"2"7"5,5)2+"2)3"/)5:!!1#2)2+,)521#"&,)1.)9MNF4%8,)52#:32:#,5A?)1#)'"G)#,J:%#,)

',$%"2%1/)21)31/6,#2)8/1<4,$&,).#1')")/1/F5,'"/2%3)%/21)")5,'"/2%3).1#').1#):5,())*+%5)!#13,55)%5):5,$)

712+).1#)2+,)0:74%5+)"/$)E,J:,52)"32%6%2%,5()

*+,)0:74%5+%/&)!#13,55)"55%&/5)2+,)"6"%4"74,)#,51:#3,5)21)2+,)#,5!,32%6,)7:5%/,55)"/$)5,#6%3,)%/.1#'"2%1/)%/)

2+,) "!!#1!#%"2,) #,&%52#%,5) >%(,(?) R--K) "5) $,5%&/"2,$) 7G) ") 5:734"55) 1.) 8$5$E,&%52#GA) "/$)MC-N5()) *+%5)

#,5,"#3+) ,/6%5%1/5) 2+"2) $1'"%/F5!,3%.%3) #,&%52#%,5) "#,) #,J:%#,$) 21) 5:!!1#2) 2+%5) ":21'"2%1/) %/) 31/S:/32%1/)

<%2+) $1'"%/F5!,3%.%3) 1/2141&%,5()) *+,) 31/2,@2) 1.) ") $1'"%/) %5) 6%2"4) 21) 31##,324G) %/2,#!#,2) "/$)'"23+) 2+,)

5,'"/2%35()

Fig. 5. KDSWS top-level methodology.

KDSWS Meta-model discussion references this section to further explain context

and use, this discussion may require referencing back to the “definition” presented in

the KDSWS Meta-model discussion. Also, it is suggested that the reader take a look

at Sec. 5 to understand some of the implementation mechanics of the components.

As a note, the “s” for plural forms of the singular-based objects are purposely not

underlined to distinguish the singular-based objects from the plural-based objects.

The Establish AoF process sets up the policies, rules and catalogs for the VO.

Policies are implemented as rules, so the heuristics on the kdsdPolicy objects are ex-

tensible. The catalogs are references for what is deemed as an “offering”, and can be

designated as “available” at the enterprise level, local level or both. The designation

is made by making kdsdDescription an attribute (with a type of “object”) of the

kdsdResource (superclass of kdsdCatalog) and setting the kdsdVisibility attribute

to the appropriate value.

Since the Prepare task primarily identifies what is available, the primary out-

put is a map of name-value pairs of those offerings. From the Prepare for Publish

November 18, 2004 14:6 WSPC/111-IJCIS 00102

A Framework for Dynamic Semantic Web Services Management 461

perspective, these maps reflect what is valid to offer; whereas, the Prepare

for Request reflects what is valid to use.

The Designate Workflow Patterns process produces a map of the avail-

able kdsdScenario objects and their associated kdsdWorkflow kdsdPatterns.

The Define Transaction Controls process creates a map of the available

kdsdTransactionTypes and their controls (e.g. Max Time). The Define QoS Parms

process creates a map of available kdsdSLAType (e.g. blankets) with the asso-

ciated kdsdServiceGuarantees (e.g. delivery time) and kdsdServiceLevelRanges,

where kdsdServiceLevelRanges reflects the minimum and/or maximum values of

that service type. The Define Security Paradigms process creates a map of avail-

able kdsdSecurityParadigms (e.g. Partner versus guest access) and the associ-

ated kdsdProtocols that support each paradigm. The Define Protocols process cre-

ates a map of the available kdsdOperations and their supported kdsdProtocols.

The Define Transportation Vehicles process creates a map of the available opera-

tions with their supported kdsdTransportationModes (e.g. extranet, intranet and

internet). The Define Feedback Structures process defines kdsdStatusTemplates,

kdsdMetricGoals, kdsdRatingStructures and kdsdResultsTemplates, which are not

shown in the meta-model. These exemplify classes under kdsdProfile that provide

infrastructure support for the optimization of a system.

The Transform & Supply Knowledge process handles transforming and supply-

ing knowledge (i.e. knowledge also includes data and information) into a semantic

form. The knowledge may be stored in a semantic form (e.g. XML databases that

can support the storage of OWL-like structures), or may require mediation to con-

vert knowledge from a non-semantic into a semantic form for use. This process is

used both for the Publish and Request activities.

The Publishing process assigns the available resources to the respective business

and service information in the appropriate registries (i.e. UDDI as designated by a

subclass of kdsdRegistry) and WSDLs. This research envisions that domain-specific

registries are required to support this automation in conjunction with domain-

specific ontologies. The context of a domain is vital to correctly interpret and match

the semantics.

These next processes commence the request processing chain of processes

versus the publishing chain just discussed. The Request Planning process in-

volves handling kdsdSubscriptions and creating the profiles for the request (in the

form of kdsdRequestProfiles) and the requestor’s environment so that turnaround

time can be reduced by binning the request into a prescribed course of action.

kdsdSubscriptions is placed under events because their purpose is to notify sub-

scribers when certain events occur (e.g. product to be distributed or news).

The Issue Master Request process collects the kdsdRequest, kdsdConstraints,

kdsdPreferences, and kdsdSearchPriorities to form the kdsdMasterRequest.

kdsdMasterRequest is a dynamically aggregated object where rules are applied as

how to form the object. One way this is accomplished is by defining a TARGET in

a KDSPL process object (see next section) where the process’s purpose is to create

November 18, 2004 14:6 WSPC/111-IJCIS 00102

462 R. Howard & L. Kerschberg

an object by invoking the rules in the process object. Another way is to specify

an attribute type of “process” that will direct an agent to execute a process to

instantiate the object. Yet another method is to dynamically map an object is to

specify the mapping in the rules for the object as it is instantiated. The last method

is explained in Sec. 5 by adding the kdsdMapObject attribute.

The Receive Request process senses that a request has been submitted either

by subscription or submission, and determines if the request requires brokering or

it is specified.

The iterative nature of this methodology commences with the Decompose

Process process where the process specification is mapped into the workflow. The

Traverse Workflow process iterates through workflow to execute the steps specified

in the process or kdsdWorkPattern. The Configuration Package, or configuration

plan as mentioned below, is built up as this loop is completed.

The brokering activities occur primarily in the Produce & Rank Search Results

and Produce Selected Services processes. Current research suggests syntactic,

semantic and pragmatic brokering types, or semiotic brokering to reflect all three.

Syntactic brokering uses the structure or format of a task specification to match

a requester with a service provider, semantic brokering uses the request’s meaning

and information content to match with the meaning of the offered services of the

provider,60 and pragmatic,61 involves using the context of the interaction to broker

services.

The discovery of available services depends on search capabilities that involve

the semantic specification of constraints and preferences of the requestor to match

with the same semantic specification of the provider and the provider’s services. We

cite KnowledgeSifter62 as such as a semiotically-enabled brokering facility in that

the traditional syntactic search engines are used, ontologies are used for semantic

meaning, and the ontologies are domain-specific to set context for the pragmatic

criteria. By facilitating the semiotic brokering about the resource that fulfills the

request, the client can make decisions as to whether the result is acceptable or not,

and measure satisfaction with the resource if it chooses to use it for future requests.

A key enabler of this measurement and “cognition of success” for future use will be

Knowledge Discovery and Data Mining techniques.

Another key enabler along these lines is to develop organizational ontologies that

can be complemented with personal ontologies created by users over the course of

their decision-making and investigations about a service’s result(s). These reflect

personal preferences regarding: (1) how concepts are related and organized, (2) pre-

ferred search engines, and (3) opinions regarding the authoritativeness of a source

and the accuracy of its information. These preferences can be used to rank, sift and

winnow the results returned.

The search results are ranked according to the kdsdSearchPriorities.

The Produce Selected Services process differentiates the services using kdsdSLA

and kdsdQoS parameters with the track records of the providers and services in

the respective subclasses of kdsdHistory, negotiates using kdsdNegotiationPolicy

November 18, 2004 14:6 WSPC/111-IJCIS 00102

A Framework for Dynamic Semantic Web Services Management 463

and kdsdSelectionPolicy, and ultimately selects the services and any alternatives

that may have been identified. The Monitor & Adjust Brokering Components

process optimizes resources such as kdsdSearchRequestProfiles and

kdsdAgentProfiles, kdsdSearchAgentCapabilities, and kdsdNegotiationPerformance

(a subclass of kdsdHistory) that are involved in the brokering activity. The

Certify & Synchronize Services process validates and verifies the resultant services,

and then merges and synchronizes them with the workflow to create an opti-

mum execution plan (e.g. time and sequence a given provider’s services to execute

together).

At this juncture, these processes transition from an emphasis on brokering to de-

livering the services’ functionality or product. The Deploy Services process applies

the Articles of Federation embodied in kdsdAoF, coordinates resources, creates the

Fulfillment Package using information from the Configuration Package, checks and

opens ports (in the case of critical endpoints), establishes time and security bound-

aries from the kdsdTransaction and kdsdSecurity objects, profiles the environment,

and captures the profile of the request.

The Invoke Execution process commences the execution cycle. The Manage

Execution process is a supervisory process over the subsequent delivery steps, which

handles the issues concerning the threads via the simultaneous (i.e. simultaneous be-

cause they execute parallel with the parent to handle specialized functionality) pro-

cesses that will now be discussed. The Manage SLA simultaneous-process enforces

the Service Level Agreements (SLA), while the Handle Anomalies simultaneous-

process deals with such situations as errors, exceptions and constraint viola-

tions. The Manage Limits, Tolerances and Workload simultaneous-process man-

ages the Quality of Service aspects. The Integrate w/Other Services and Protocols

simultaneous-process coordinates and mediates the interactions with the interfaces

of surrounding disparate processes. The Manage Payloads simultaneous-process

manages the messaging needs. The Monitor & Measure Fulfillment simultaneous-

process supports the metrics needs of the enterprise, and ensures that the in-

teractions with the requestor, albeit human or machine, effectively to keep the

workflow proceeding. The Deliver Functionality & Provide Feedback simultaneous-

process determines whether products need to be delivered, notifications sent, or

responses sent to requestors immediately as the individual services are executed or

packaged and held until the entire workflow is complete.

The Enact Workflow process first determines if workflow is involved. If not,

the flow proceeds to Secure Transaction process; otherwise, the workflow is once

again managed and iterated through. The Configure Transaction process groups

and sequences the transactions together in order to optimize the execution.

The Secure Transaction process authenticates and authorizes the request and

requestor, validates the activity, and encrypts the messages if necessary. The

Execute Transaction process executes the transaction group, and then returns to

the Enact Workflow process for subsequent steps.

November 18, 2004 14:6 WSPC/111-IJCIS 00102

464 R. Howard & L. Kerschberg

3.2.3. KDSWS specification languages

In order to model the framework’s data-centric concepts, we use an extended version

of the Knowledge/Data Model (KDM).52 that incorporates an object-oriented view

of data, together with knowledge regarding its usage. The KDM is an extension

of the semantic data model and draws heavily upon the features of the functional

data model,63 object-oriented paradigm, and knowledge-based systems. The KDM

models the semantics of an enterprise, including data semantics, as captured by

semantic data models and knowledge semantics, as captured in knowledge-based

systems. The most generic construct in the KDM is the object type and is specified

in the Knowledge/Data Language (KDL) template depicted in Fig. 6, which shows a

general template for an object-type (class) specification employing the KDL.64 The

KDL and KDSPL’s reserved words are shown in uppercase letters. Identifiers shown

in lowercase letters are place holders for user input. Optional items in the template

are enclosed in square brackets, and at least one of each of the items contained in

curly brackets must be part of the specification using the extended BNF grammar.65

Notice that object-type-name can be specified as a kdsd-object to denote objects

from the KDL or a kdsp-object to denote objects from the KDSPL. The significant

features of the KDM data model are:

• The incorporation of heuristics to model inferential relationships.

• The capability to organize these heuristics and to associate them with specific

items involved in the inferential relationships.

• The capability to incorporate heuristics and constraints in a tightly coupled

(unified) manner.

• The ability to define inferred (virtual) objects.

• A unified representational formalism for knowledge and data.

• A mechanism that allows for abstract knowledge typing, that is, handling rules

and constraints as objects.

The discussion below presents the semantic primitives available in the KDM:

• Generalization: Generalization (the inverse of which is specialization)

provides the facility in the KDM to abstract similar object-types into a more gen-

eral or higher-level object-type (an object-type is a collection of related objects).

This is done by means of the “is-a” relationship (e.g. the object-types kdsdService

and kdsdAgent and generalized into the kdsdResource object-type). This gener-

alization hierarchy establishes the inheritance mechanism (e.g. kdsdService and

kdsdAgent inherit the properties and methods of kdsdResource).

• Aggregation: Aggregation (the inverse of which is decomposition) is an

abstraction mechanism where an object is related to the components that con-

stitute it via the “is-part-of” relationship (e.g. the objects kdsdPreCondition,

kdsdPostCondition and kdsdRule are part of kdsdGoal data).

• Classification: Classification (the inverse of which is instantiation) provides a

means whereby specific object instances can be grouped together and considered

November 18, 2004 14:6 WSPC/111-IJCIS 00102

A Framework for Dynamic Semantic Web Services Management 465

 19

• !"#$%&'(#%)*+,&-.-&-#/-)*+'#0+1-2&($%(/)34!""#$%&%"'(&")*%")&&+,-%."/0"/$%&%"1*+2+/+3%&"+-"0*.%*"
/0"4)5+6+/)/%"*%78&%"/$*08,$08/"/$%"&1%5+4+5)/+0-"9)&%:"

• !"#$%&'(#%)*+,&-.-&-#/-)*+'#0+1-2&($%(/)!'%-5"&(-$!"#$%&%";<#=>?@'=A"1*03+.%"/$%")9+6+/B"/0"
,*081"/$%"50-&/*)+-/&")-."*86%&"/0,%/$%*"&85$")&"&%58*+/B")-."2%&&),+-,:""

09C%5/7/B1%"!!D"
?EF=;#G#HI="56)&&7-)2%"J<A"

K"(=A;@'I#'?L!"&/*+-,MN"
K">?<OA!"56)&&7-)2%"P"Q"56)&&7-)2%"RMN"
K"ASI=@#HI=A!"TT">%-%*)6+U)/+0-"

56)&&7-)2%"P"Q"56)&&7-)2%"RMN"
K"ASE#HI=A!"TT"A1%5+)6+U)/+0-"

56)&&7-)2%"P"Q"56)&&7-)2%"R"K"J'('L>"48-5/+0-76+&/"NMN"
K"<##@'ES#=A!"TT"<,,*%,)/+0-"

P")//*+98/%7-)2%!"/B1%7-)2%"
K"A=#"?V"W"O'A#"?V"W"X<I"?V"N"3)68%7/B1%"KQ"3)68%7/B1%
K"Y'#J";?LA#@<'L#!"50-&/*)+-/"NMRZN"

K"X=XE=@A!"TT"X%29%*&$+1"[<&&05+)/+0-\"
P"2%29%*7-)2%!"K"A=#"?V"W"O'A#"?V"N"56)&&7-)2%"

K"'L]=@A="?V"2%29%*7-)2%"K[56)&&7-)2%\NN"
K"Y'#J";?LA#@<'L#!"50-&/*)+-/"NMRZN"

K"<IIO';<E'O'#H!"[X=#J?(?O?>H"W">O?E<O"W"O?;<O\MN"
K"<>=L;'=A!""
" P"56)&&7-)2%!"
" <>=L;H7@?O=!"&/*+-,"

I?'L#7?V7;?L#<;#!"&/*+-,""
I?'L#7?V7;?L#<;#7@?O=!"&/*+-,MRZN"

K"('A#@'ES#'?L!""
P=L(7I?'L#!"&/*+-,""
('A#@'ES#'?L7@?O=!"56)&&7-)2%""
DISTRIBUTION-SCHEDULE: schedule;}+]

K";?LA#@<'L#A!"TT"^-0_6%.,%"/0"%-40*5%"+-/%,*+/B"
;?LA#@<'L#7'(!"50-&/*)+-/7'("
;?LA#@<'L#7;<#=>?@'=A!"56)&&7-)2%"P"Q"56)&&7-)2%M"RN"
50-&/*)+-/"P"Q"50-&/*)+-/M"RMNN"

K"I@=V=@=L;=A!"TT"^-0_6%.,%"/0"*%46%5/"1*%4%*%-5%&"
I@=V=@=L;=7'(!"1*%4%*%-5%7'("
I@=V=@=L;=7;<#=>?@'=A!"56)&&7-)2%"P"Q"56)&&7-)2%M"R"
1*%4%*%-5%"P"Q"1*%4%*%-5%M"RMN"

K"J=S@'A#';A!"TT"^-0_6%.,%"/0".%*+3%T+-4%*"+-40*2)/+0-"
J=S@'A#';7'(!"$%8*+&/+57'("
J=S@'A#';7;<#=>?@'=A!"56)&&7-)2%"P"56)&&7-)2%M"R"
*86%"P"Q"*86%M"RMN"

K"X=#J?(A!"TT"A1%5+4+5)/+0-&"04"50218/)/+0-&")-."9%$)3+0*"
X=#J?(7'("
P"2%/$0.M"RMN"

=L("56)&&7-)2%M" "

'-"0*.%*"/0"20.%6"/$%"4*)2%_0*`a&"1*05%&&75%-/*+5"50-5%1/&Q"_%"+-/*0.85%"/$%"^-0_6%.,%79)&%."(B-)2+5"
A%*3+5%&TI*05%&&" X0.%6" [^(AIX\Q" _$+5$" +&" 98+6/" 4*02" /$%" 1)//%*-" &%/" 40*/$" 9B" /$%" ^(XT^(O:" " #$%"
)55021)-B+-,"09C%5/7/B1%".%4+-+/+0-Q"^-0_6%.,%79)&%."(B-)2+5"A%*3+5%&TI*05%&&"O)-,8),%"[^(AIO\Q"+&"
&$0_-"+-"V+,8*%"b:""<6/$08,$"/$%"/)*,%/"04"/$%"^(AIXT^(AIO"+&"8&%."/0"&1%5+4B"AYAQ"/$%")116+5)/+0-"04"
/$%"&1%5+4+5)/+0-"+&"-0/"-%5%&&)*+6B"*%&/*+5/%."C8&/"/0"Y%9"&%*3+5%&:"""

Fig. 6. Syntax of KDL object-type specification.

to be an object-type. This is accomplished through the use of the “is-instance-of”

relationship (e.g. “Knowledge Sifter” is a specific instance of kdsdAgent).

• Membership: Membership is an abstraction mechanism that specifically

supports the “is-a-member-of” relationship between objects or object-types

(e.g. kdsdInteroperation is an object-type containing kdsdInteroperationLevel

and kdsdLanguage members).

November 18, 2004 14:6 WSPC/111-IJCIS 00102

466 R. Howard & L. Kerschberg

• Constraint: This primitive is used to place a constraint on some aspect of an

object, operation, or relationship via the “is-constraint-on” relationship. Both

implicit (e.g. only return the top 25 ranked services from a search) and explicit

(e.g. the attribute kdsdInteroperationLevel is restricted to the values of “Data”,

“Presentation”, and “Process”).

• Heuristic: This primitive is used to attach a heuristic via the “is-heuristic-

on” relationship (e.g. Partners who are in bankruptcy are a bad risk; therefore,

do not use services from providers who are in bankruptcy). Heuristics are ex-

pressed in the form of rules. Heuristics allow information about an object to

be inferred; thus, heuristics provide an information derivation mechanism that

results in greater informational content than is present in the stored data alone.66

• Method: This primitive is used to model the behavior of object-types and to

manipulate object-types. For example, an object-type might invoke a “search”

method in order to find available services.

• Temporal: The temporal relationship is used to model specific task or event

oriented object-types that are related by synchronous or asynchronous charac-

teristics (e.g. the tasks in processing a request via Web services). Synchronous

objects are related to other synchronous objects by either the predecessor or

successor relationship. Asynchronous objects are related to other asynchronous

objects by a concurrent or parallel notion. Temporal primitives are also used for

task planning and workflow analysis.

The extensions to the KDL introduced in this research are:

• Description: DESCRIPTION allows the meaning to be specified in free-form

verbiage.

• Goals: GOALS is taken from the WSMF to capture the purpose of the objects.

• Applicability: APPLICABILITY level specifies whether security elements per-

tain to the methodology, global to the enterprise, or local to the agencies or

partners.

• Agencies: AGENCIES specifies the partner(s) to which the object applies

in the role specified in the AGENCY-ROLE (e.g. user agency, supplier).

POINT-OF-CONTACT specifies the contact point in the role specified in the

POINT-OF-CONTACT-ROLE element.

• Distribution: DISTRIBUTION dictates where to distribute policies and

resources to the enterprise in the role specified in the DISTRIBUTION-

ROLE element. DISTRIBUTION-SCHEDULE specifies when to distribute the

resources.

• Preferences: This primitive is used like constraints, and have the same con-

struct as constraints. Preferences convey desires of an entity, but are weaker

than constraints.

• Constraint-, Preference-, and Heuristic-ID: These IDs are assigned to these

primitives in order to facilitate re-use throughout the specification base.

November 18, 2004 14:6 WSPC/111-IJCIS 00102

A Framework for Dynamic Semantic Web Services Management 467

• Constraint-, Preference-, and Heuristic-Categories: These CATEGORIES

provide the ability to group the constraints and rules together such as security

and messaging.

In order to model the framework’s process-centric concepts, we introduce the

Knowledge-based Dynamic Services/Process Model (KDSPM), which is built from

the pattern set forth by the KDM/KDL. The accompanying object-type defini-

tion, Knowledge-based Dynamic Services/Process Language (KDSPL), is shown in

Fig. 7. Although the target of the KDSPM/KDSPL is used to specify SWS, the

application of the specification is not necessarily restricted just to Web services.

The specification is powerful enough to be used for non-Web services based

applications. Some of the new primitives that the KDSPM introduces are discussed

below:

• Owner: The OWNER specifies the primary agent responsible for the process.

• Steward: The STEWARD argument specifies the secondary agent that may

handle the process.

• Predecessors: The PREDECESSORS argument specifies process objects that

hand off processing to the object.

• Successors: The SUCCESSORS argument specifies the next objects in the

processing.

• Targets: The TARGETS argument specifies the resultant entity (i.e. a particular

agent or object) for which the object is intended in the specified TARGET-ROLE.

• Steps: The STEPS argument details the actions involved in executing the

process. The STEPNAME and STEP-DESCRIPTION annotate the step.

The SEQUENCE-NUMBER denotes the chronological occurrence of the step.

DELEGATE specifies what object executes the step, and because object take on

various forms, DELEGATE-TYPE and DELEGATE-ROLE specify the type and

role properties that the object assumes under this step. The OPERATION argu-

ment specifies that another KDSPL PROCESS-OBJECT, METHOD-NAME or

MANUAL-INTERVENTION performs the step. RESOURCES specify which re-

sources are necessary to support the step’s execution. The STEP-SUCCESSORS

information contains the STEP-SUCCESSOR-MODE that specifies the man-

ner (i.e. parallel, sequential, interval, etc.) in which the next step is to ex-

ecute the next step in STEP-SUCCESSOR-BRANCH under the specified

STEP-CONTROL-CONDITION.

3.2.4. KDSWS mapping

The Mappings is a super-class of all mappings to ensure consistency across the

methods to bridge the KDL/KDSPL to other technologies and standards. The

mapping process at a high level denotes a source and a destination along with

metadata for each to denote specific details to take into consideration in the

mapping. For example, the first-level super-class of mappings holds the basic

November 18, 2004 14:6 WSPC/111-IJCIS 00102

468 R. Howard & L. Kerschberg

 20

!"#$%&'&()$*++,*
-./01232450*%6788'97:$*;<=*

>*?0=1@A52A-B+*8&CD9EFG*
>*H-<I=+*%6788'97:$*J*K*%6788'97:$*LFG*
>*2<=M+*%6788'97:$*J*K*%6788'97:$LFG*
>*2;@0<?+*%6788'97:$J*K*%6788'97:$LFG*
>*=N50@2450=+*OO*H9C76DP7&D!9*

%6788'97:$*J*K*%6788'97:$*LFG*
>*=N.2450=+*OO*=)$%D76DP7&D!9*

%6788'97:$*J*K*%6788'97:$*L*>*;A?ABH*QR9%&D!9'6D8&*GFG*
>*-SB0@+*%6788'97:$*FG*
>*=20S<@?+*%6788'97:$FG*
>*<55IA1<.AIA24+*TU02;-?-I-H4*V*HI-.<I*V*I-1<IWFG*
>*<H0B1A0=+**
* J*%6788'97:$+*
* <H0B14'@-I0+*%6788'97:$*

5-AB2'-X'1-B2<12+*8&CD9E**
5-AB2'-X'1-B2<12'@-I0+*%6788'97:$FLYG*

>*?A=2@A.N2A-B+*J*$9Z')!D9&*
?A=2@A.N2A-B'@-I0+*%6788'97:$*
DISTRIBUTION-SCHEDULE: schedule;}+]

>*5@0?010==-@=+*%6788'97:$J*K*%6788'97:$*LFG*
>*=N110==-@=+*%6788'97:$J*K*%6788'97:$*LFG*
>*2<@H02=+*J%6788'97:$*

2<@H02'@-I0+*%6788'97:$FLYG*
>*2@AHH0@=+*T$[$9&'97:$*V*$\&$C976'$[$9&'97:$WFG*
>*=205=+*******J=205B<U0+*8&$)'97:$F*

=0]N0B10'BNU.0@+*8R9%$'9R:"$CF*
=205'?0=1@A52A-B+*8&$)'Z$8%CD)&D!9F*
>?0I0H<20+*%6788'97:$F*
* ?0I0H<20'2450+*T<H0B2*V*S0.*=0@_A10*V*;NU<BWF*
* >?0I0H<20'@-I0+*T_A@2N<I*V*IAB0*V*=2<XX*V*H@A?*V*5@AU<@4*V*=01-B?<@4WGFG*
>-50@<2A-B+*%6788'97:$F*
* U02;-?'B<U0+*:$&`!Z'97:$F*
* >U<BN<I'AB20@_0B2A-B+*:79R76'D9&$C[$9&D!9FG*

>5@-10=='-./012+*%6788'97:$FGG*
>@0=-N@10=+*%6788'97:$J*K*%6788'97:$*LFG*
>=205'=N110==-@=+*

=205'=N110==-@'U-?0+*T5<@<II0I*V*=0]N0B2A<I*V**
AB20@_<I*V*I--5*V*S;AI0*V*1-B?A2A-B<I*V*?01A=A-B*
=AUNI2<B0-N=WF*

=205'=N110==-@'.@<B1;+**8&$)'%!9&C!6'"C79%`F*
>=205'1-B2@-I'1-B?A2A-B+*8&$)'%!9&C!6'%!9ZD&D!9GFLYG*

>*1-B=2@<AB2=+*OO*M9!a6ZE*&!*$9Q!C%$*D9&$ECD&(*
1-B=2@<AB2'A?+*%!98&C7D9&'A?*
1-B=2@<AB2'1<20H-@A0=+*%6788'97:$*J*K*%6788'97:$F*L*
%!98&C7D9&*J*K*%!98&C7D9&F*LFG*

>*5@0X0@0B10=+*OO*M9!a6ZE*&!*C$Q6$%&*)CQC$9%$8*
5@0X0@0B10'A?+*)CQC$9%$'A?*
5@0X0@0B10'1<20H-@A0=+*%6788'97:$*J*K*%6788'97:$F*L*
)CQC$9%$*J*K*)CQC$9%$F*LFG*

>*;0N@A=2A1=+*OO*M9!a6ZE*&!*Z$CD[$OD9Q$C*D9Q!C:7&D!9*
;0N@A=2A1'A?+*`$RCD8&D%'A?*
;0N@A=2A1'1<20H-@A0=+*%6788'97:$*J*%6788'97:$F*L*
CR6$*J*K*CR6$F*LFG*

**
0B?*%6788'97:$F *

2`$*8)$%DQD%7&D!9*D8*)!a$CQR6*$9!RE`*&!*"$*R8$Z*Q!C*9!9'S$"*8$C[D%$8*"78$Z*7))6D%7&D!98b**=!:$*!Q*&`$*9$a*
)CD:D&D[$8*&`7&*&`$*M?=5U*D9&C!ZR%$8*7C$*ZD8%R88$Z*"$6!a+***

• !"#$%&**2`$*-SB0@*8)$%DQD$8*&`$*)CD:7C(*7E$9&*C$8)!98D"6$*Q!C*&`$*)C!%$88b*
• '($")%*&**2`$*=20S<@?*7CER:$9&*8)$%DQD$8*&`$*8$%!9Z7C(*7E$9&*&`7&*:7(*`79Z6$*&`$*)C!%$88b**
• +%$*$,$--.%-&* * 2`$* 5@0?010==-@=* 7CER:$9&* 8)$%DQD$8*)C!%$88* !"#$%&8* &`7&* `79Z* !QQ*

)C!%$88D9E*&!*&`$*!"#$%&b*
• '/,,$--.%-&*2`$*=N110==-@=*7CER:$9&*8)$%DQD$8*&`$*9$\&*!"#$%&8*D9*&`$*)C!%$88D9Eb*
• 0)%1$(-&*2`$*2<@H02=*7CER:$9&*8)$%DQD$8*&`$*C$8R6&79&*$9&D&(*TDb$bK*7*)7C&D%R67C*7E$9&*!C*!"#$%&W*

Q!C*a`D%`*&`$*!"#$%&*D8*D9&$9Z$Z*D9*&`$*8)$%DQD$Z*2<@H02'@-I0b*

Fig. 7. Syntax of KDSPL object-type specification.

structures, while a specific protocol can be specified for the specific mappings

relative to that protocol. The mappings fall into four classes: internal for map-

ping within the KDSWS Specifications, export for mapping KDSWS Specifications

to external components, import for mapping external components into the

KDSWS Specifications, and interactive mappings that are bi-directional. It is im-

portant to note that this pertains to the KDSWS Specification, so elements within

the KDSWS Functional Architecture are considered external components as well.

November 18, 2004 14:6 WSPC/111-IJCIS 00102

A Framework for Dynamic Semantic Web Services Management 469

The internal mapping to other KDSWS objects (both KDL and KDSPL) enables

the aggregation of the “building blocks” to be defined by rules versus relationships.

Because the rules are much easier to change than hard-coded logic, the framework

is much more flexible in adapting to change. This rules-based approach facilitates

the dynamic generation of the framework’s profiles (e.g. requestors, providers, situ-

ations, services, etc.) in order to drive the matchmaking of a request to service(s).

By combining the rules with events, the framework allows the dynamic adjustment

of the process to address the “static process declaration” issue by having certain

conditions invoke specific behavior.

The interactive mapping to, and from, SWS technologies is achieved at two

levels: globally and local to the object. The global mapping involves mapping the

arguments of the KDL and KDSPL to the respective elements in the destination

protocol. The local mapping is generated from explicitly specifying the protocol to

be used in an object in an instantiation of the KDL.

The interoperation with specialty engines such as Workflow Management

Systems (WfMS), Expert Systems, or Ontology Engines enhance the capabilities

of this framework by providing mappings to these specialized tools. This mapping

can be either be an import or interactive class, but the specialty data is generally

imported to allow the specialty engine “specialize” and be the master of its data.

The profiles of the various agents are embedded throughout the KDSPL. This

interactive mapping with agent profiles identifies the points where agents are speci-

fied and organizes into a profile that contains the responsibilities of the agent within

a given context. From this profile, the specification for a given agent can be engi-

neered into a working component. Although beyond the scope of this discussion,

the interactive category is derived from the agent updating its own specification

via learning during its activity.

The export mapping from the KDL to database schemas and object-oriented

classes map to classes or tables, attributes map directly to class attributes or

database attributes, and methods map to methods. The heuristic rules map to

rules in active databases or applications.

3.3. KDSWS functional architecture

This research introduces the concept of packages, three in particular — “Configura-

tion Package” (CP) and a “Fulfillment Package” (FP), and “Enactment Package”

(EP). Because the loosely-coupled and asynchronous environment cannot depend

on a session or given database to maintain state, these packages are necessary to

maintain the state and distribute information for the process. A CP is used during

the brokering activities in order to collect and configure the results of the selected

services, where a FP is used during the execution of the Web services. An EP is a

specialized package used for workflow steps to manage the workflow. The CP and

FP distribute policies and workflow steps, convey information respective to their

focus areas, and convey state of a workflow enactment in order to facilitate the

November 18, 2004 14:6 WSPC/111-IJCIS 00102

470 R. Howard & L. Kerschberg

maintenance of the organization’s infrastructure. In order to distribute and share

rules, the approach is to identify catalogs and their associated metadata. Meta-

data attributes such as version and last update date are distributed in the FP, and

the partners check to see if they need to update their enterprise knowledge base

from the endpoint designated in the FP. The metadata fields are included (as op-

posed to the actual rules) in order to reduce the payload. To reduce the potentially

long-running transactions’ dependence on network connectivity and resources, the

packages also carry the workflow steps with the associated controls and state of the

workflow.

3.3.1. Functional federation architecture

The primary function of the Functional Federation Architecture (FFA) is to es-

tablish the governance of the enterprise operations where possible. Although the

majority of the activities within the FFA are not automated — they establish the

fundamental guidance for the partners to operate as an organization. The items

that can be automated are embodied in the heuristics. The federation may be very

loose and informal, or be legitimized by formal contracts. The important facet is

that these issues need to be dealt with at some level. The FFA coordinates the

roles and responsibilities of the partners within an enterprise to assist with joint

ownership issues and to compensate for the potential “no partner in charge” issue

within a VO.

In the Federate Functions process, the VO handles the strategic layer of

management. This is where the VO decides what functions will reside where within

the organization. The enforcement mechanisms for the Articles of Federation and

Service Level Agreements are established here. The roles and responsibilities are

determined of the partners along with their level of participation in the organiza-

tion. The governing policies set boundaries for the VO, such as how a partner joins

or leaves the VO, confidentiality, and which resources made available only within

the organization and which are made available beyond the partners.

In the Federate Agents process, the VO addresses the value-chain management

layer, and decides the distribution of agents and processes, and the associated

owners/stewards within the organization. The allowable process controls and meth-

ods to handle anomalies (errors, exceptions, and constraint violations) are defined.

The level of management allowed over the workflow and the methods to coordinate

constraints are defined as well.

In the Federate Knowledge process, the VO decides where and how the knowl-

edge will be stored, maintained, and distributed. The ownership and stewardship

of those resources also needs to be specified.

3.3.2. Functional agent services architecture

The agent architecture used in the KDSWS Architecture is the Functional Agent

Services Architecture (FASA)67 that is based on an agency-based approach in which

November 18, 2004 14:6 WSPC/111-IJCIS 00102

A Framework for Dynamic Semantic Web Services Management 471

agents are organized in agencies to further establish the context of where opera-

tion is invoked. Aspects from the Distributed Agent Resource (DAR) Protocol are

incorporated into FASA. DAR is used to manage resources using such constructs

as enterprise and local agency constraints.68 The FASA consists of three layers —

User, Intelligent Middleware and Web Services. This three-layer architecture con-

tains virtual agents that specify agents’ aggregation and coordinate the activities

of other agents, line agents are involved in work specifications, and support agents

that line agents use for generic support functions.

The User Layer is supported by the User Agency that coordinates a collection of

services such as task specification, planning, user profile administration, and order

tracking. The concept is that users would visit a portal of the e-enterprise, compose

their request in terms of a high-level task, and interact with the planning agent

to decompose the task into a plan that would be submitted to the next layer, the

Intelligent Middleware Services.

The Intelligent Middleware Services layer is supported by the Functional

Services Agency whose agents receive the task specification and plan from the

User Agency, and search for appropriate Internet-based Web services that can

accomplish the tasks. Those Web services may have already been vetted for

use by the e-enterprise by the Services Coordination Agency residing at the

Web Services Layer. For example, Curation agents are involved in identifying, stor-

ing, and evolving a repository of successful patterns of Web services that have been

successful in performing high-level user tasks.

The Web Services Layer is supported by the Services Coordination Agency

whose agents verify that the services are available, schedule the various sub-

transactions, and execute the configuration plan that is submitted by the

Functional Services Agency. The Services Coordination Agency also monitors the

progress of each transaction, maintains records of the transactions, their status,

and QoS for future processing and reporting. In addition, several other agents re-

side at this layer and perform their collaborative functions to place new services in

the service registry. In order for a new service to be a candidate for inclusion into

the e-enterprise repositories, it must be tested, annotated with QoS attributes, and

certified to perform at advertised levels of service.67

3.3.3. Functional knowledge architecture

The Functional Knowledge Architecture (FKA) contains knowledge (e.g. rules and

catalogs, where catalogs are the available offerings to choose from) that is stored

in a Semantic Web form that is readily incorporated into SWS and knowledge that

is pulled from stores that must be mediated to be used by SWS.69 An example

of the Semantic Web form are ontologies stored in OWL, where an example of

the non-Semantic Web form is a reference table on a mainframe computer. This

knowledge includes aspects of linguistics to focus on usage and reference as well as

the traditional relations between the elements.70

November 18, 2004 14:6 WSPC/111-IJCIS 00102

472 R. Howard & L. Kerschberg

3.3.4. Web services protocols

Protocols are an essential backbone for Web services that establish the expected

means to communicate between end-points. There are numerous protocols (see

Ref. 27) used to support Web services, some of which are mature, but most are

still emerging at varying levels of maturity. Additionally, the various technologies

and protocols often compete to become the industry standard; thus, increasing the

instability of the protocol base. Semantic expansions to these protocols will likely

be necessary to take full advantage of the expanded functionality in this framework.

3.3.5. Grid interface

The framework treats the Grid Interface as yet another service layer for resources

that clients have available within the VO. Clients can choose to use the Grid’s

interface as a blackbox, designate a preferred resource within the Grid as a pref-

erence (as a graybox), or access the resources directly (i.e. if permitted to do so).

The framework can designate services as having a “grid-edge” visibility to reflect

that they “front” the grid for client requests; however, this does not preclude the

continued use of Web services within the Grid.

Conceptually, data and metadata must be packaged to travel the Grid to the

processes that will execute them. (The “fulfillment package” mentioned earlier can

be very useful for this transportation.) In the context of the Semantic Web, we must

ensure that pedigree and provenance, as shown in the meta-model’s kdsdGraybox

(graybox indicating some visibility behind the blackbox border and supports the in-

tent of the WSRF protocol discussed in Sec. 2.2) subclass under the kdsdDescription

class, are maintained via appropriate namespaces. For example, Table 1 presents a

set of abstract classes representing concepts that reflect best practice for scientific

information in a grid setting.71 If WSRF is adopted, the mapping to WSRF’s tech-

nical specifications will also be useful in enabling the additional visibility into the

Grid.

Recently, the issue of creating an ontology for Grid environments has been

proposed.71 The authors point out that “GRID environments are service-oriented

Table 1. Scientific information classes.

Pedigree Represents a line of ancestry from creation through various transformations to
arrive at the current data set. It also includes information related to the scientific
project and data identity.

Scientific Use Describes how a scientist used the data, what experiments were performed, what
were the parameters and configuration of models.

Dataset Describes data typically stored storage facilities, and may include parameters,
location, and the study that produces this data.

Service Concerns how a service may be invoked and what its capabilities are in a gridded
architecture.

Access Concerns whom is allowed to access the data, security and authentication.

Other Includes annotations, comments, and evaluations.

November 18, 2004 14:6 WSPC/111-IJCIS 00102

A Framework for Dynamic Semantic Web Services Management 473

and emphasize operations that can be performed on data using associated meta-

data schemas, rather than focusing upon the content of metadata schemas and re-

lationships between schema elements”. In order for middleware services to be able

to respond to service requests, the metadata (both schema and instance levels)

must be available to that service. The metaphor for Knowledge Sifter, a Seman-

tic Web-enabled search agent, is that each query has an associated OWL-schema

instantiation which is exchanged by the agents and updated based on the services

performed. This captures the pedigree and provenance of the entire collection of

activities associated with the instance.72

4. Application Scenario

The scenario is based on the emergency services domain responding to a

hurricane situation, and it highlights the primary features of the framework. The

scenario revolves around the tasks in the life-cycle as they are performed to fulfill the

request. The focus of the scenario is to further explain how this framework works

and the benefits that it provides. The scenario, as shown in Fig. 11, is explained

in two manners — chronologically as the sequence of events that take place during

scenario execution, and by notations of the various elements surrounding the exe-

cution. The steps are numbered, whereas the notations are marked by underlined

alphabetic characters (e.g. A). As a note, not all of the KDL and KDSPL objects

are diagrammed, but are presented in the discussion to enhance the understanding.

To demonstrate the tailoring ability of the framework, notice the specialization

of the profiles in steps 1(a). Embed Provider/Service Knowledge in UDDI (a

priori) and 1(b). Embed Provider/Service Knowledge in WSDL (a priori). These

steps entail executing the steps in the kdsdPublishHurricaneServices process

that is specific to the emergency services and hurricane domains, which pulls

in the associated kdsdHurricaneConstraints and kdsdHurricanePreferences em-

bodied in kdsdHurricaneServiceProfile and kdsdEmergencyServicesProviderProfile.

kdspPublishHurricaneServices’s mapping rules specify to post the semantically-

enhanced ontological markup to extensions of WSDL and UDDI reposito-

ries. 2. Event Occurs represents the kdspHurricaneEvent sensed with the system

matches that of kdsdHuuricaneProfile and commences fulfilling the associated

needs for the emergency as represented in 3. Commence Request by executing the

kdspReceiveRequest process.

To demonstrate 4. Aggregate Knowledge, Fig. 8 shows an example of a partial

specification for kdsdHurricaneRequestProfile. In this case, kdsdHurricaneProfile

and kdsdHurricanePattern, are included as attributes to compose the object.

kdsdHurricaneProfile is an instantiation of the kdsdScenario class, and it stores

knowledge about the scenario called Hurricane such as the urgency of the sce-

nario so the proper priority can be placed on the request. kdsdHurricanePattern

establishes the workflow steps necessary to handle a typical hurricane situation.

5. Compile Master Request assigns the pulls kdsdHurricaneRequestProfile and

November 18, 2004 14:6 WSPC/111-IJCIS 00102

474 R. Howard & L. Kerschberg

 24

!"#$%&'()!*&)*(&*(+)',#("#'(!'$-"#&).$/'01'*#$'&.$)*!'&)/'23/&*$/'0&!$/'+)'*#$'!$45("$!'3$46+4%$/7''8#(!'

"&3*24$!'*#$'3$/(.4$$'&)/'34+5$)&)"$'+6'*#$'$)*(4$'"+99$"*(+)'+6'&"*(5(*($!'&!!+"(&*$/',(*#'*#$'()!*&)"$':;<=7'

!"#$%&'(&&)*+%,-+.+*&/,.012"-+0,&3$"44%4&

Pedigree Represents a line of ancestry from creation through various

transformations to arrive at the current data set. It also includes

information related to the scientific project and data identity.

Scientific_Use Describes how a scientist used the data, what experiments were

performed, what were the parameters and configuration of models.

Dataset Describes data typically stored storage facilities, and may include

parameters, location, and the study that produces this data.

Service Concerns how a service may be invoked and what its capabilities are in a

gridded architecture.

Access Concerns whom is allowed to access the data, security and

authentication.

Other Includes annotations, comments, and evaluations.

4 Application Scenario

8#$' !"$)&4(+' (!' 0&!$/' +)' *#$' $%$4.$)"1' !$45("$!' /+%&()' 4$!3+)/().' *+' &' #244("&)$' !(*2&*(+)>' &)/' (*'

#(.#9(.#*!'*#$'34(%&41'6$&*24$!'+6'*#$'64&%$,+4?7''8#$'!"$)&4(+'4$5+95$!'&4+2)/'*#$'*&!?!'()'*#$'9(6$@"1"9$'

&!' *#$1'&4$'3$46+4%$/' *+' 6296(99' *#$' 4$A2$!*7' '8#$' 6+"2!'+6' *#$' !"$)&4(+' (!' *+' 624*#$4'$-39&()' *#$'#+,' *#(!'

64&%$,+4?',+4?!'&)/' *#$'0$)$6(*!' *#&*' (*'34+5(/$!7' '8#$'!"$)&4(+>'&!'!#+,)'()'B(.24$'CC>' (!'$-39&()$/' ()'

,+'%&))$4!D'"#4+)+9+.("&991'&!'#$'!$A2$)"$'+6'5)*!'*#&*'*&?$'39&"$'/24().'!"$)&4(+'$-$"2*(+)>'&)/'01'

)+*&*(+)!' +6' *#$' 5&4(+2!' 9%$)*!' !244+2)/().' *#$' $-$"2*(+)7' ' 8#$' !*$3!' &4$')2%0$4$/>' ,#$4$&!' *#$'

)+*&*(+)!' &4$' %&4?$/' 01' 2)/$49()$/' &93#&0$*("' "#&4&"*$4!' E$7.7>'5F7' G!' &')+*$>')+*' &99' +6' *#$' HIJ' &)/'

HIKLJ'+0M$"*!'&4$'/(&.4&%%$/>'02*'&4$'34$!$)*$/'()'*#$'/(!"2!!(+)'*+'$)#&)"$'*#$'2)/$4!*&)/().7'

8+'/$%+)!*4&*$'*#$'*&(9+4().'&0(9(*1'+6'*#$'64&%$,+4?>')+*("$'*#$'!3$"(&9(N&*(+)'+6'*#$'34+6(9$!'()'!*$3!'C&7'

O%0$/' L4+5(/$4PK$45("$' H)+,9$/.$' ()' QIIR' E&34(+4(F' &)/' C07' O%0$/' L4+5(/$4PK$45("$' H)+,9$/.$' ()'

SKIJ'E&'34(+4(F7'''8#$!$'!*$3!'$)*&(9'$-$"2*().'*#$'!*$3!'()'*#$'?/!/L209(!#T244("&)$K$45("$!'34+"$!!'*#&*'

(!' !3$"(6("' *+' *#$' $%$4.$)"1' !$45("$!' &)/' #244("&)$' /+%&()!>' ,#("#' 3299!' ()' *#$' &!!+"(&*$/'

?/!/T244("&)$U+)!*4&()*!' &)/' ?/!/T244("&)$L4$6$4$)"$!' $%0+/($/' ()' ?/!/T244("&)K45("$L4+6(9$' &)/'

?/!/O%$4.$)"1K$45("$!L4+5(/$4L4+6(9$7' ' ?/!3L209(!#T244("&)K45("$!V!' %&33().' 429$!' !3$"(61' *+' 3+!*'

#$' !$%&)("&991@$)#&)"$/'+)*+9+.("&9'%&4?23' *+'$-*$)!(+)!'+6'SKIJ'&)/'QIIR' 4$3+!(*+4($!7' '<7'O5$)*'

W""24!' 4$34$!$)*!' *#$'?/!3T244("&)$O5$)*' !$)!$/',(*#' *#$' !1!*$%'%&*"#$!' *#&*' +6' ?/!/T224("&)$L4+6(9$'''

&)/'"+%%$)"$!'6296(99().'*#$'&!!+"(&*$/')$$/!'6+4'*#$'$%$4.$)"1'&!'4$34$!$)*$/'()'X7''U+%%$)"$'Y$A2$!*'

01'$-$"2*().'*#$'?/!3Y$"$(5$Y$A2$!*'34+"$!!7'

8+' /$%+)!*4&*$' Z7' G..4$.&*$' H)+,9$/.$>' B(.24$' [' !#+,!' &)' $-&%39$' +6' &' 3&4*(&9' !3$"(6("&*(+)' 6+4'

?/!/T244("&)YA2$!*L4+6(9$7' ' R)' *#(!'"&!$>'?/!/T244("&)$L4+6(9$'&)/'?/!/T244("&)$L&**$4)>' &4$' ()"92/$/'

&!'&**4(02*$!'*+'"+%3+!$'*#$'+0M$"*7'''

+0M$"*@*13$DD\?/!/T244("&)YA2$!*L4+6(9$

DG88YR]Q8OK ?/!/T244("&)$L4+6(9$ D8^LO W0M$"*

?/!/T244("&)$L&**$4) D8^LO W0M$"* '

6+781%&9(&&5771%7"-+0,&%:"2;$%&<+-=+,&>?4?@811+*",%A%B8%4-C10.+$%&DEF&0#G%*-&

?/!/T244("&)$L4+6(9$' (!' &)' ()!*&)*(&*(+)' +6' *#$' ?/!/K"$)&4(+' "9&!!>' &)/' (*' !*+4$!' ?)+,9$/.$' &0+2*' *#$'

!"$)&4(+'"&99$/'T244("&)$'!2"#'&!'*#$'24.$)"1'+6'*#$'!"$)&4(+'!+'*#$'34+3$4'34(+4(*1'"&)'0$'39&"$/'+)'*#$'

4$A2$!*7' ' ?/!/T244("&)$L&**$4)' $!*&09(!#$!' *#$' ,+4?69+,' !*$3!')$"$!!&41' *+' #&)/9$' &' *13("&9' #244("&)$'

!(*2&*(+)7' ' _7' U+%3(9$' `&!*$4' Y$A2$!*' &!!(.)!' *#$' 3299!' ?/!/T244("&)$Y$A2$!*L4+6(9$' &)/'

Fig. 8. Aggregation example within kdsdHurricaneRequestProfile KDL object.

 25

!"#"$%&&'()*+,+)&(-.&'/&'0'+#1 0/2+0-+&1)*"1)##'2*#1 (/*#0&)'*0#1 /31 4&+3+&+*(+#1 0-)01 4+&0)'*1 0/1 5-+&+1 0-+1

-%&&'()*+1 -'01)*"1 5-)01 #4+(')61 ('&(%7#0)*(+#1 *++"1 0/1 8+1 (/*#'"+&+"1 '*1 4&/(+##'*21 0-+1 &+9%+#01 0-)01)&+1

+78/"'+"1'*1!"#"$%&&'()*+:;+*0<11='2%&+1>1"+7/*#0&)0+#10-'#1%#'*210-+1?@AB:?1)*"14&'7'0';+1'*1CD,.E<111

F?@AB:? !"#"$%&&'()*(+G)#0+&A+9%+#0

F,?:., F,?:.H@G: !"#4@44+*"I!"#"$%&&'()*+A+9%+#0.&/3'6+

F,:JK:HL:MHKGN:A O

F,?:.M,KLL:,,PAMGPD: ,+9%+*0')6

F,?:.M,KLL:,,PAMNA@HL$!"#4@44+*"I!"#"$%&&'()*+,+)&(-.&'/&'0'+#

F,?:.H@G: !"#4@44+*"I!"#"$%&&'()*+,+)&(-.&'/&'0'+#

F,:JK:HL:MHKGN:A Q

F,?:.M,KLL:,,PAMGPD: ,+9%+*0')6

F,?:.M,KLL:,,PAMNA@HL$!"#4@44+*"I!"#"$%&&'()*+:;+*0

F,?:.H@G: !"#4@44+*"I!"#"$%&&'()*+:;+*0

F,:JK:HL:MHKGN:A R

/8S+(0M0T4+FFU!"#4G)4G)#0+&A+9%+#0

1

!"#$%&'()''*+,-./&'01'234,-"5'-,.."4#'01','678'09:&5;'$<"4#'67=>8'

@#1 #++*1 5'0-1 V<1 .+&3/&71 ,%84&/(+##+#1)*"1 W<1 .&/(+##1 5/&!36/51 0/1 3'*"1 #+&;'(+#1 +X+746'3'+#1 0-)01 0-+1

CD,.E1()*1-)*"6+18/0-1 0-+1#0+4#1 0/14&/(+##1 0-+1 &+9%+#01)#15+661)#1 0-+15/&!36/51"+4'(0+"1 '*1 0-+1 #+&;'(+1

#4+('3'()0'/*<1 1 Y*1 0-+1 #4+('3'(1 ()#+1 /31 0-+1 D'#(/;+&1 #%84&/(+##+#1 /31 !"#4L6)##'3TA+9%+#0Z1

!"#4,+)&(-=/&,+&;'(+#1)*"1!"#4L/74'6+A+#%60#Z1)*1)2+*01 #%(-1)#1C*/56+"2+,'30+&1 [VQ\1 '#1"+#'2*)0+"1 '*1

0-+1#4+('3'()0'/*10/13'*"14/0+*0')61#+&;'(+#10-)01()*13%63'6610-+1&+9%+#0#<1C*/56+"2+1,'30+&1'#1)*1)2+*0M8)#+"1

/*0/6/2TM"&';+*1#+)&(-1)2+*01 0-)01()*17+"')0+1/*0/6/2'()61 0+&7#1 0/1)((+##1-+0+&/2+*+/%#1 &+4/#'0/&'+#<1 1 Y01

()*1 0-+&+3/&+1)((+##1)446'()0'/*M"/7)'*M#4+('3'(1 &+2'#0&'+#1 0/1 #+6+(01 #+&;'(+#1 8)#+"1 /*1 %#+&M#4+('3'+"1

3+)0%&+#Z1#%(-1)#19%)*0'0TZ1);)'6)8'6'0TZ10&)*#4/&0)0'/*1(/#0#Z1+0(<1Y*10-+1W<1.&/(+##15/&!36/510/13'*"1#+&;'(+#1

4&/(+##Z1 0-+1 5/&!36/51 '#1 '0+&)0+"1 0-&/%2-1 0-+1 3' 0'7+1 0/1 '"+*0'3T1)*"1 (/*3'2%&+1 0-/#+1]+81 #+&;'(+#1

'*;/6;+"1'*13%63'66'*210-+1&+9%+#0<111

?-+1!"#4D'33+&+*0')0+Z1!"#4L/74)&+Z1!"#4H+2/0')0+1#0+4#1'*10-+1,+6+(014&/(+##1(%67'*)0+1'*10-+1^<1Y"+*0'3T1

G)#0+&1,+&;'(+1(6)##'3T'*21)12';+*1]+81,+&;'(+1)#10-+14&'7)&T1#+&;'(+10/1-)*"6+10-)014)&01/310-+14&/(+##<11

?-+1_G)#0+&1,+&;'(+`17)T1'0#+6318+13%&0-+&1"+(/74/#+"10/1'"+*0'3T1/0-+&1#'746+1#+&;'(+#1/&1/0-+&1_G)#0+&1

,+&;'(+#`<1 1 @*1 '74/&0)*01 4/'*01 '*1 %*"+�)*"'*21 0-+1 #(+*)&'/1)01 0-'#1 S%*(0%&+1 '#1 0-)01 ><1 Y0+&)0+1 %*0'61)661

#+&;'(+#1 YDa"1 &+36+(0#1 0-+1 D'#(/;+&Z1 ,+)&(-1)*"1 L/*3'2%&+1 4&/(+##+#1)&+1 4+&3/&7+"1 %*0'61)661 0-+1]+81

#+&;'(+#1 0-)01)&+1 *+(+##)&T1 0/1 4&/(++"1)&+1 '"+*0'3'+"<1 1 ,/7+1 6)0+&1 #0+4#1 7)T1 &+9%'&+1 &+4+)0'*21 0-+#+1

4&/(+##+#10/13'*"1#+&;'(+#1"/5*#0&+)71'*10-+1+X+(%0'/*<111

Ob<1 N%'6"1 =%63'667+*01 .)(!)2+1 '*;/6;+#1 4&+4)&'*21 0-+1 4)(!)2+1 0-)015'661 ()&&T1 +X+(%0'/*15/&!36/5Z1 #0)0+1

'*3/&7)0'/*1)*"1 +*0+&4&'#+1 ()0)6/21 '*3/&7)0'/*1 0-&/%2-/%01 0-+1 D+6';+&1 4&/(+##<1 1 OO<1 :*)(01 5/&!36/51 0/1

"+6';+&1 #+&;'(+#1 '0+&)0+#1 0-&/%2-1 0-+1 5/&!36/51 /*(+1)2)'*1 '*1 /&"+&1 0/1 "+6';+&1 0-+1 #+&;'(+#<1 1 @*/0-+&1

'74/&0)*014/'*01'#10-)010-+1L/*3'2%&+14&/(+##17)T1)"S%#01)*"1&+3'*+10-'#15/&!36/510/1/40'7'c+10-+1D+6';+&1

4&/(+##<1 1 Y*1 0-+1 +X+(%0'/*1/31 0-+1 &+9%+#0Z1 OQ<1@*/7)6T1:;+*01P((%-+*1 '01 '#1 3/%*"1 0-+1 0-+&+1)&+1 */01

+*/%2-186)*!+0#Z15-'(-10&'22+!"#4E/()6N6)*!+0L/*#0&)'*0d'/6)0'/*<11='2%&+1Ob1#-/5#1)*1+X)746+1/310-+1

"T*)7'(1)"S%#07+*01/310-+15/&!36/518)#+"1/*10-'#1+;+*018T1%#'*210-+1$:KAY,?YL,1/40'/*1'*1CD,.E<1

/8S+(0M0T4+FFU!"#4,%446TN6)*!+0#

F,?:., F,?:.H@G: !"#4A+9%'#'0'/*N6)*!+0#

F,:JK:HL:MHKGN:A O

F,?:.M,KLL:,,PAMGPD: ,+9%+*0')6

F$:KAY,?YL, Y31!"#4E/()6N6)*!+01L/*#0&)'*0d'/6)0'/*Z1

:X+(%0+1!"#4E/()6N6)*!+0L/*#0&)'*0d'/6)0'/* 1

Fig. 9. Example of dynamic mapping of a KDL object using KDSPL.

kdsdHurricaneSearchPriorities together and assigns constraints of preferences that

pertain to where the hurricane hit and what special circumstances need to be consid-

ered in processing the request that are embodied in kdsdHurricaneEvent. Figure 9

demonstrates this using the TARGET and primitive in KDSPL.

As seen with 6. Perform Subprocesses and 7. Process workflow to find services

exemplifies that the KDSPL can handle both the steps to process the request

as well as the workflow depicted in the service specification. In the specific case

of the Discover subprocesses of kdspClassifyRequest, kdspSearchForServices and

kdspCompileResults, an agent such as KnowledgeSifter62 is designated in the spec-

ification to find potential services that can fulfill the requests. Knowledge Sifter is an

agent-based ontology-driven search agent that can mediate ontological terms to ac-

cess heterogeneous repositories. It can therefore access application-domain-specific

registries to select services based on user-specified features, such as quantity, avail-

ability, transportation costs, etc. In the 7. Process workflow to find services process,

the workflow is iterated through the first time to identify and configure those Web

services involved in fulfilling the request.

The kdspDifferentiate, kdspCompare, kdspNegotiate steps in the Select process

culminate in the 8. Identify Master Service classifying a given Web Service as the

primary service to handle that part of the process. The “Master Service” may

itself be further decomposed to identify other simple services or other “Master

Services”. An important point in understanding the scenario at this juncture is

that 9. Iterate until all services ID’d reflects the Discover, Search and Configure

processes are performed until all the Web services that are necessary to proceed are

identified. Some later steps may require repeating these processes to find services

downstream in the execution.

November 18, 2004 14:6 WSPC/111-IJCIS 00102

A Framework for Dynamic Semantic Web Services Management 475

 25

!"#"$%&&'()*+,+)&(-.&'/&'0'+#1 0/2+0-+&1)*"1)##'2*#1 (/*#0&)'*0#1 /31 4&+3+&+*(+#1 0-)01 4+&0)'*1 0/1 5-+&+1 0-+1

-%&&'()*+1 -'01)*"1 5-)01 #4+(')61 ('&(%7#0)*(+#1 *++"1 0/1 8+1 (/*#'"+&+"1 '*1 4&/(+##'*21 0-+1 &+9%+#01 0-)01)&+1

+78/"'+"1'*1!"#"$%&&'()*+:;+*0<11='2%&+1>1"+7/*#0&)0+#10-'#1%#'*210-+1?@AB:?1)*"14&'7'0';+1'*1CD,.E<111

F?@AB:? !"#"$%&&'()*(+G)#0+&A+9%+#0

F,?:., F,?:.H@G: !"#4@44+*"I!"#"$%&&'()*+A+9%+#0.&/3'6+

F,:JK:HL:MHKGN:A O

F,?:.M,KLL:,,PAMGPD: ,+9%+*0')6

F,?:.M,KLL:,,PAMNA@HL$!"#4@44+*"I!"#"$%&&'()*+,+)&(-.&'/&'0'+#

F,?:.H@G: !"#4@44+*"I!"#"$%&&'()*+,+)&(-.&'/&'0'+#

F,:JK:HL:MHKGN:A Q

F,?:.M,KLL:,,PAMGPD: ,+9%+*0')6

F,?:.M,KLL:,,PAMNA@HL$!"#4@44+*"I!"#"$%&&'()*+:;+*0

F,?:.H@G: !"#4@44+*"I!"#"$%&&'()*+:;+*0

F,:JK:HL:MHKGN:A R

/8S+(0M0T4+FFU!"#4G)4G)#0+&A+9%+#0

1

!"#$%&'()''*+,-./&'01'234,-"5'-,.."4#'01','678'09:&5;'$<"4#'67=>8'

@#1 #++*1 5'0-1 V<1 .+&3/&71 ,%84&/(+##+#1)*"1 W<1 .&/(+##1 5/&!36/51 0/1 3'*"1 #+&;'(+#1 +X+746'3'+#1 0-)01 0-+1

CD,.E1()*1-)*"6+18/0-1 0-+1#0+4#1 0/14&/(+##1 0-+1 &+9%+#01)#15+661)#1 0-+15/&!36/51"+4'(0+"1 '*1 0-+1 #+&;'(+1

#4+('3'()0'/*<1 1 Y*1 0-+1 #4+('3'(1 ()#+1 /31 0-+1 D'#(/;+&1 #%84&/(+##+#1 /31 !"#4L6)##'3TA+9%+#0Z1

!"#4,+)&(-=/&,+&;'(+#1)*"1!"#4L/74'6+A+#%60#Z1)*1)2+*01 #%(-1)#1C*/56+"2+,'30+&1 [VQ\1 '#1"+#'2*)0+"1 '*1

0-+1#4+('3'()0'/*10/13'*"14/0+*0')61#+&;'(+#10-)01()*13%63'6610-+1&+9%+#0#<1C*/56+"2+1,'30+&1'#1)*1)2+*0M8)#+"1

/*0/6/2TM"&';+*1#+)&(-1)2+*01 0-)01()*17+"')0+1/*0/6/2'()61 0+&7#1 0/1)((+##1-+0+&/2+*+/%#1 &+4/#'0/&'+#<1 1 Y01

()*1 0-+&+3/&+1)((+##1)446'()0'/*M"/7)'*M#4+('3'(1 &+2'#0&'+#1 0/1 #+6+(01 #+&;'(+#1 8)#+"1 /*1 %#+&M#4+('3'+"1

3+)0%&+#Z1#%(-1)#19%)*0'0TZ1);)'6)8'6'0TZ10&)*#4/&0)0'/*1(/#0#Z1+0(<1Y*10-+1W<1.&/(+##15/&!36/510/13'*"1#+&;'(+#1

4&/(+##Z1 0-+1 5/&!36/51 '#1 '0+&)0+"1 0-&/%2-1 0-+1 3' 0'7+1 0/1 '"+*0'3T1)*"1 (/*3'2%&+1 0-/#+1]+81 #+&;'(+#1

'*;/6;+"1'*13%63'66'*210-+1&+9%+#0<111

?-+1!"#4D'33+&+*0')0+Z1!"#4L/74)&+Z1!"#4H+2/0')0+1#0+4#1'*10-+1,+6+(014&/(+##1(%67'*)0+1'*10-+1^<1Y"+*0'3T1

G)#0+&1,+&;'(+1(6)##'3T'*21)12';+*1]+81,+&;'(+1)#10-+14&'7)&T1#+&;'(+10/1-)*"6+10-)014)&01/310-+14&/(+##<11

?-+1_G)#0+&1,+&;'(+`17)T1'0#+6318+13%&0-+&1"+(/74/#+"10/1'"+*0'3T1/0-+&1#'746+1#+&;'(+#1/&1/0-+&1_G)#0+&1

,+&;'(+#`<1 1 @*1 '74/&0)*01 4/'*01 '*1 %*"+�)*"'*21 0-+1 #(+*)&'/1)01 0-'#1 S%*(0%&+1 '#1 0-)01 ><1 Y0+&)0+1 %*0'61)661

#+&;'(+#1 YDa"1 &+36+(0#1 0-+1 D'#(/;+&Z1 ,+)&(-1)*"1 L/*3'2%&+1 4&/(+##+#1)&+1 4+&3/&7+"1 %*0'61)661 0-+1]+81

#+&;'(+#1 0-)01)&+1 *+(+##)&T1 0/1 4&/(++"1)&+1 '"+*0'3'+"<1 1 ,/7+1 6)0+&1 #0+4#1 7)T1 &+9%'&+1 &+4+)0'*21 0-+#+1

4&/(+##+#10/13'*"1#+&;'(+#1"/5*#0&+)71'*10-+1+X+(%0'/*<111

Ob<1 N%'6"1 =%63'667+*01 .)(!)2+1 '*;/6;+#1 4&+4)&'*21 0-+1 4)(!)2+1 0-)015'661 ()&&T1 +X+(%0'/*15/&!36/5Z1 #0)0+1

'*3/&7)0'/*1)*"1 +*0+&4&'#+1 ()0)6/21 '*3/&7)0'/*1 0-&/%2-/%01 0-+1 D+6';+&1 4&/(+##<1 1 OO<1 :*)(01 5/&!36/51 0/1

"+6';+&1 #+&;'(+#1 '0+&)0+#1 0-&/%2-1 0-+1 5/&!36/51 /*(+1)2)'*1 '*1 /&"+&1 0/1 "+6';+&1 0-+1 #+&;'(+#<1 1 @*/0-+&1

'74/&0)*014/'*01'#10-)010-+1L/*3'2%&+14&/(+##17)T1)"S%#01)*"1&+3'*+10-'#15/&!36/510/1/40'7'c+10-+1D+6';+&1

4&/(+##<1 1 Y*1 0-+1 +X+(%0'/*1/31 0-+1 &+9%+#0Z1 OQ<1@*/7)6T1:;+*01P((%-+*1 '01 '#1 3/%*"1 0-+1 0-+&+1)&+1 */01

+*/%2-186)*!+0#Z15-'(-10&'22+!"#4E/()6N6)*!+0L/*#0&)'*0d'/6)0'/*<11='2%&+1Ob1#-/5#1)*1+X)746+1/310-+1

"T*)7'(1)"S%#07+*01/310-+15/&!36/518)#+"1/*10-'#1+;+*018T1%#'*210-+1$:KAY,?YL,1/40'/*1'*1CD,.E<1

/8S+(0M0T4+FFU!"#4,%446TN6)*!+0#

F,?:., F,?:.H@G: !"#4A+9%'#'0'/*N6)*!+0#

F,:JK:HL:MHKGN:A O

F,?:.M,KLL:,,PAMGPD: ,+9%+*0')6

F$:KAY,?YL, Y31!"#4E/()6N6)*!+01L/*#0&)'*0d'/6)0'/*Z1

:X+(%0+1!"#4E/()6N6)*!+0L/*#0&)'*0d'/6)0'/* 1

Fig. 10. Example of dynamic adjustment of workflow.

10. Build Fulfillment Package involves preparing the package that will carry

execution workflow, state information and enterprise catalog information through-

out the Deliver process. 11. Enact workflow to deliver services iterates through

the workflow once again in order to deliver the services. Another impor-

tant point is that the Configure process may adjust and refine this work-

flow to optimize the Deliver process. In the execution of the request,

12. Anomaly Event Occurs when it is found that there are not enough blankets,

which triggers kdspLocalBlanketConstraintViolation. Figure 10 shows an example

of the dynamic adjustment of the workflow based on this event by using the

HEURISTICS option in KDSPL.

The workflow designated in kdspConstraintViolation exemplifies the ver-

satility of the three means to specify operations in 13. Process Alternatives,

14. Invoke KDL Method and 15. Perform Manual Operation 13. Process

Alternatives reflects that the framework incorporates the identification and pro-

cessing of alternatives and the execution of another process object; however, this

example only identifies the alternatives. The kdsdSolicitRequestor method from the

KDL specification is invoked to ask the requestor what alternative path to take. A

manual operation can also be specified as is shown by requiring the requestor to

make a choice.

Notation A depicts the KDL specification of the object kdsdHurricaneEvent

as shown in Fig. 12. The SUPERCLASS references a subclass (kdsdSensor)

of the KDL object kdsdEvent The ATTRIBUTES show typical information

that the event would pass along for processing. The heuristic indicates that if

the temperature is below 60 Fahrenheit then more blankets are needed. The

METHOD kdspPrepareForHurricane references a process object that will specify

the workflow to prepare for the hurricane.

Notation F provides a sample KDSPL Specification for the

kdspSearchForProviders object shown in Fig. 13. Notice that the TASK and

THREAD (kdspDiscover and kdspManagement, respectively) establish the con-

text of the process. In this case, the KDSPL can be tailored per the task and

thread in order to specialize the behavior. The OWNER references the KDL ob-

ject kdsdSearchAgent, which has its own set of attributes and methods in its

KDL object specification. The STEWARD specifies kdsdKnowledgeSifter, which

would be specified as a kdsdFunctionPoint object. kdsdFunctionPoint is a sub-

class of kdsdRepository which stores the endpoint, or URI, of the agent. As a

N
ov

em
b
er

1
8
,
2
0
0
4

1
4
:6

W
S
P

C
/
1
1
1
-IJ

C
IS

0
0
1
0
2

4
7
6

R
.
H

o
w
a
rd

&
L
.
K

ersch
berg

2
6

!
"#
$
%&'(

)
*''+

,
-
.
/
0&'1

2'3
4
5
-
.
"6'-

3
7$
89.

&5
9'1

2':
1
%;

201
:
'

!
"
#$
%
&
'(
)*&

%
$
+
#,-.

/
01#+

$
-/
$
(
+
,2
3
&
/
,1'0-/

14
-&
*01-&

/
$
#5
#6

2
*-)-#,$

1"
#$
7
#',01-*-18

$
&
)$
1"
#$
1"
'##$

6
#0/

,$
1&
$

,2
#9-)8

$
&
2
#'01-&

/
,$
-/
$
:
;
<$
=
'&
9#,,$

>
*1#'/

01-7
#,?$

:
@
<$
A/
7
&
(
#$

B
C
D
$
E
#1"

&
+
$
0/
+
$
:
F
<$
=
#')&

'6
$
E
0/
G
0*$

H
2
#'01-&

/
<$
$
:
;
<$
=
'&
9#,,$

>
*1#'/

01-7
#,$

'#)*#91,$
1"
01$

1"
#$

)'06
#%

&
'(
$
-/
9&
'2
&
'01#,$

1"
#$

-+
#/
1-)-901-&

/
$
0/
+
$

2
'&
9#,,-/

.
$
&
)$
0*1#'/

01-7
#,$

0/
+
$
1"
#$
#5
#9G

1-&
/
$
&
)$
0/
&
1"
#'$

2
'&
9#,,$

&
I
J#91K$

"
&
%
#7
#'?$

1"
-,$

#5
06

2
*#$

&
/
*8
$

-+
#/
1-)-#,$1"

#$0*1#'/
01-7

#,<$$!
"
#$(

+
,+
L
&
*-9-1M

#N
G
#,1&

'$6
#1"

&
+
$)'&

6
$1"

#$B
C
D
$,2

#9-)-901-&
/
$-,$-/

7
&
(
#+
$1&

$0,(
$

1"
#$'#N

G
#,1&

'$%
"
01$0*1#'/

01-7
#$2

01"
$1&

$10(
#<$$>

$6
0/
G
0*$&

2
#'01-&

/
$90/

$0*,&
$I
#$,2

#9-)-#+
$0,$-,$,"

&
%
/
$I
8
$

'#N
G
-'-/

.
$1"

#$'#N
G
#,1&

'$1&
$6

0(
#$0$9"

&
-9#<$

C. Map object-type and

attributes to database trigger

G.Extract all references to

kdsdMediationAgent in KDSPL

Specification along with relevant

hueristics, constraints, and

methods

kdspMapToFKA

Tasks

Hurricane Hits Carolina

Coast

Discover

Select

Configure

Deploy

Prepare

for

Request

Request

kdsdHurricane

RequestProfile
kdsdHurricanePattern

kdsdHurricaneProfile

kdsdHurrince

MasterRequest

Candidate Services

kdsdMasterService

Certified Services

Committed Services
Fulfillment

Package

Deliver

kdspHurricaneEvent

Step 1: kdspDifferentiate

Step 2: kdspCompare

Step 3: kdspNegotiate

D. SWS Data Element

<kdsd:eventHurricane>

kdspLocalBlanket

ConstraintViolation

Database

Trigger

Execution of

kdspSupplyBlankets

I. SWS Process Element

<owl:Class rdf:ID="workflowHurricane">

<kdsp:Workflow>

Step 1: kdspClassifyRequest

Step 2: kdspSearchForServices

Step 3: kdspCompileSearchResults

4. Aggregate Knowledge

6. Perform Subprocesses

A. KDL Specification

Agent

F. KDSPL Specification for kdspSearchForProviders

Step 1: kdspGatherAlternatives

Step 2: kdsdSolicitRequestor

Step 3: Requestor specify alternative

event: # of blankets

not available

13. Process Alternatives

14. Invoke KDL Method

15. Perform Manual Operation

12. Anomaly Event Occurs

7. Process workflow to

find services

kdspMapToMediationAgent kdspMapToSemanticWeb

kdspMapToSemanticWeb

KnowledgeSifter

UDDI

WSDL

Step 1: kdspInvoke

Step 2: kdspIterateSteps

Step 3: kdspExcecute

Step 4: kdspFeedback

kdsdMediationAgent

H. Map process object and steps to OWL-S

Process Components.

kdsdEmergencyService

sProviderProfile

2. Event Occurs

3. Commence Request

5. Compile Master Request

8. Identify Master Services

1a. Embed Provider/Service

Knowledge in UDDI (a priori)

(kdsdPublishHurricaneServices)

1b. Embed Provider/Service

Knowledge in WSDL (a priori)

(kdsdPublishHurricaneServices)

11. Enact workflow

to deliver services

10. Build Fulfillment

Package

Hurricane Workflow Pattern Instantiation

Step 1: Get Food

Step 2: Get Blankets

Step n:

Step 1: kdspFoodAgency

Step 2: kdspFoodDomain

Step 3: kdspFoodSupplier

Step 1: kdspBlanketAgnecy

Step 2: kdspBlanketDomain

Step 3: kdspBlanketSupplier

E. Distributed Agency-based

Resource Management

9. Iterate until all

services ID'd

B. Map object-type and attributes to an XML

element

SWS

Form

Color Legend

KDL Object

KDSPL Object

Example

kdsdHurricance

ServiceProfile

kdsdHurricance

ServiceProfile

$

!
"#
$
%&'(

(
*'<

6&5
-
%"1

'=
%1
6&88'-

5
3
'>

?
7&698'

O
&
101-&

/
$@

$+
#2
-91,$1"

#$B
C
D
$,2

#9-)-901-&
/
$&
)$1"

#$&
I
J#91$(

+
,+
P
G
''-90/

#Q
7
#/
1$0,$,"

&
%
/
$-/

$R
-.
G
'#$:

S
<$$!

"
#$

L
T
=
Q
M
3
D
>
L
L
$'#)#'#/

9#,0,G
I
9*0,,$U(

+
,+
L
#/
,&
'V$&

)$1"
#$B

C
D
$&
I
J#91$(

+
,+
Q
7
#/
1$$!

"
#$>

!
!
M
AW
T
!
Q
L
$,"

&
%
$

Fig. 11. Scenario process and objects.

November 18, 2004 14:6 WSPC/111-IJCIS 00102

A Framework for Dynamic Semantic Web Services Management 477

 27

!"#$%&'($)*+,-&!$+)(!.&!(!./(/0/)!(1+2'3(#&44(&'+)5(*+,(#,+%/44$)56((7./(./2,$4!$%($)3$%&!/4(!.&!($*(!./(

!/-#/,&!2,/($4(8/'+1(9:(;&.,/)./$!(!./)(-+,/(8'&)</!4(&,/()//3/36((7./(=>7?@A(

<34#B,/#&,/;+,?2,,$%&)/(,/*/,/)%/4(&(#,+%/44(+8C/%!(!.&!(1$''(4#/%$*"(!./(1+,<*'+1(!+(#,/#&,/(*+,(!./(

.2,,$%&)/6(

+8C/%!D!"#/EEF<343?2,,$%&)/>0/)!

EGHB>I7JB>G <343G/)4+,

EK77ILMH7>G <343N+%&!$+) E7JB> G!,$)5 EO@PG7IKLP7

<343G!,/)5!. E7JB> L)!/5/, EO@PG7IKLP7 QR(SQ

<3437/-#/,&!2,/ E7JB> L)!/5/, EO@PG7IKLP7 QO/'%$24(4%&'/Q

EO@PG7IKLP7

E?>HILG7LOG L*(<3437/-#/,&!2,/(R(9:;T(4/%2,/(/U!,&(8'&)</!4

E=>7?@AG <34#B,/#&,/;+,?2,,$%&)/

P+!&!$+)(!(#,+0$3/4(&(4&-#'/(VAGBN(G#/%$*$%&!$+)(*+,(!./(<34#G/&,%.;+,B,+0$3/,4(+8C/%!(4.+1)($)(;$52,/(

WX6((P+!$%/(!.&!(!./(7KGV(&)3(7?I>KA(Y<34#A$4%+0/,(&)3(<34#=&)&5/-/)!T(,/4#/%!$0/'"Z(/4!&8'$4.(!./(

%+)!/U!(+*(!./(#,+%/446((L)(!.$4(%&4/T(!./(VAGBN(%&)(8/(!&$'+,/3(#/,(!./(!&4<(&)3(!.,/&3($)(+,3/,(!+(4#/%$&'$[/(

!./(8/.&0$+,6((7./(@\P>I(,/*/,/)%/4(!./(VAN(+8C/%!(<343G/&,%.K5/)!T(1.$%.(.&4($!4(+1)(4/!(+*(

&!!,$82!/4(&)3(-/!.+34($)($!4(VAN(+8C/%!(4#/%$*$%&!$+)6((7./(G7>\KIA(4#/%$*$/4(<343V)+1'/35/G$*!/,T(

1.$%.(1+2'3(8/(4#/%$*$/3(&4(&(<343;2)%!$+)B+$)!(+8C/%!6((<343;2)%!$+)B+$)!($4(&(428%'&44(+*(

<343I/#+4$!+,"(1.$%.(4!+,/4(!./(/)3#+$)!T(+,(HILT(+*(!./(&5/)!6((K4(&(BI>A>O>GG@IT(

<34#O'&44$*"I/]2/4!($4(!./(#,/0$+24(#,+%/44($)(!./(%.&$)6((7./()/U!(4!/#($)(!./(#,+%/44(1$''(8/(!./(

GHOO>GG@I(<34#O+-#$'/G/&,%.I/42'!46(

E^@KNG

E7KGV <34#A$4%+0/,

E7?I>KA <34#=&)&5/-/)!

E@\P>I <343G/&,%.K5/)!

EG7>\KIA <343V)+1'/35/G$*!/,

EBI>A>O>GG@IG <34#O'&44$*"I/]2/4!

EGHOO>GG@IG(

EG7>BG EG7>BPK=> G/&,%.HAAL

EG>_H>PO>DPH=M>I W

EG7>BDA>GOILB7L@P

EG7>BDGHOO>GG@ID=@A> A/%4+)

EG7>BDGHOO>GG@IDMIKPO? <34#K3C24!G/&,%.B&,&-/!/,4 EG7>BDO@P7I@NDO@PAL7L@P L)42**$%$/)!(I/42'!4

EG7>BDGHOO>GG@ID=@A> G/]2/)!$&'

EG7>BDGHOO>GG@IDMIKPO? <34#I&)<I/42'!4 EG7>BDO@P7I@NDO@PAL7L@P G2**$%$/)!(I/42'!4

EA>N>^K7> <343V)+1'/35/G$*!/,

EA>N>^K7>D7JB> K^>P7

EA>N>^K7>DI@N> NLP>

E@B>IK7L@P 4/&,%.HAAL

E=>7?@ADPK=> <343V)+1'/35/G$*!/,6G/&,%.

EO@PG7IKLP7

E?>HILG7LOG

G/&,%.(!./(HAAL(,/5$4!,"(*+,(&%%/#!&8'/(#,+0$3/,4(&)3(4/,0$%/4

+8C/%!D!"#/EEF<34#G/&,%.;+,B,+0$3/,4

B,+0$3/,G/&,%.^+&'(Y;$)3(4/,0$%/4(*,+-(#,+0$3/,4(!.&!(-//!(!./(5+&'4(+*(!./(,/]2/4!Z

<343G/&,%.I/!2,)N$-$!(YI/!2,)(+)'"(!./(!+#(`SZ

<34#O+-#$'/G/&,%.I/42'!4

B&,!)/,4(1.+(&,/($)(8&)<,2#!%"(&,/(&(8&3(,$4<a(!./,/*+,/T(3+()+!(24/(4/,0$%/4(*,+-(#,+0$3/,4(1.+(&,/($)(8&)<,2#!%"b (

!"#$%&'(<*'+,-98&0%/=!;%>%;3",&%-'568>7'89&/":"/04";1'

7.$4(4&-#'/(#,+%/44(+8C/%!(.&4(!./(4$)5'/(4!/#(+*(G/&,%.HAALT(1$!.(<343V)+1'/35/G$*!/,(3/4$5)&!/3(&4(

!./(A>N>^K7>(&4(1/''6((P+!$%/(!./(8,&)%.$)5(&8$'$!"(+*(VAGBN(0$&(!./(G7>BDGHOO>GG@ID=@A>T(

G7>BDO@P7I@NDO@PAL7L@P(&)3(G7>BDGHOO>GG@IDMIKPO?(&,52-/)!46((((7+(3/-+)4!,&!/(

&)+!./,(-/!.+3(!+(3")&-$%&''"(&3C24!(!./(1+,<*'+1T($*(cL)42**$%$/)!(I/42'!4d(&,/(3/'$0/,/3T(!./(#,+%/44(

<34#K3C24!G/&,%.B&,&-/!/,4($4($)0+</3a(+!./,1$4/(!./(#,+%/44(%+)!$)2/4(!+(/U/%2!/(<34#I&)<I/42'!46((7./(

A>N>^K7>D7JB>(3/4$5)&!/4(&('$)/(&5/)!(Y0$&(!./(A>N>^K7>DI@N>Z6((7./(+#/,&!$+)($4(4#/%$*$/3(&4(!./(

G/&,%.(-/!.+3(*,+-(<343V)+1'/35/G$*!/,6((7./(O@PG7IKLP7(<343G/&,%.I/!2,)N$-$!(4#/%$*$/4(!+('$-$!(

!./(4/&,%.(,/42'!4(!+(!./(!+#(`S(,&)</3(4/,0$%/46((7./(,2'/($)(?>HILG7LOG(4&"4(!.&!(!./(/)!/,#,$4/(3+/4()+!(

1&)!(!+(3/&'(1$!.(824$)/44/4(!.&!(&,/($)(8&)<,2#!%"6(

P+!&!$+)4(?(Y<34#=+G/-&)!$%\/8Z(&)3((@(Y<34#=+;VKZ(8+!.(24/(!./(+8C/%!D!"#/(&)3(!./(

&!!,$82!/4(!+(!./$,(!&,5/!46((P+!&!$+)4(A(Y<34#=+=/3$&!$+)K5/)!Z(&)3(.(Y<34#=+G/-&)!$%\/8Z(

Fig. 12. kdsdHurricaneEvent KDL specification.

 27

!"#$%&'($)*+,-&!$+)(!.&!(!./(/0/)!(1+2'3(#&44(&'+)5(*+,(#,+%/44$)56((7./(./2,$4!$%($)3$%&!/4(!.&!($*(!./(

!/-#/,&!2,/($4(8/'+1(9:(;&.,/)./$!(!./)(-+,/(8'&)</!4(&,/()//3/36((7./(=>7?@A(

<34#B,/#&,/;+,?2,,$%&)/(,/*/,/)%/4(&(#,+%/44(+8C/%!(!.&!(1$''(4#/%$*"(!./(1+,<*'+1(!+(#,/#&,/(*+,(!./(

.2,,$%&)/6(

+8C/%!D!"#/EEF<343?2,,$%&)/>0/)!

EGHB>I7JB>G <343G/)4+,

EK77ILMH7>G <343N+%&!$+) E7JB> G!,$)5 EO@PG7IKLP7

<343G!,/)5!. E7JB> L)!/5/, EO@PG7IKLP7 QR(SQ

<3437/-#/,&!2,/ E7JB> L)!/5/, EO@PG7IKLP7 QO/'%$24(4%&'/Q

EO@PG7IKLP7

E?>HILG7LOG L*(<3437/-#/,&!2,/(R(9:;T(4/%2,/(/U!,&(8'&)</!4

E=>7?@AG <34#B,/#&,/;+,?2,,$%&)/

!"#$%&'()*'+,-,.$%%"/01&23&14'567'89&/":"/04";1'

P+!&!$+)(!(#,+0$3/4(&(4&-#'/(VAGBN(G#/%$*$%&!$+)(*+,(!./(<34#G/&,%.;+,B,+0$3/,4(+8C/%!(4.+1)($)(;$52,/(

WX6((P+!$%/(!.&!(!./(7KGV(&)3(7?I>KA(Y<34#A$4%+0/,(&)3(<34#=&)&5/-/)!T(,/4#/%!$0/'"Z(/4!&8'$4.(!./(

%+)!/U!(+*(!./(#,+%/446((L)(!.$4(%&4/T(!./(VAGBN(%&)(8/(!&$'+,/3(#/,(!./(!&4<(&)3(!.,/&3($)(+,3/,(!+(4#/%$&'$[/(

!./(8/.&0$+,6((7./(@\P>I(,/*/,/)%/4(!./(VAN(+8C/%!(<343G/&,%.K5/)!T(1.$%.(.&4($!4(+1)(4/!(+*(

&!!,$82!/4(&)3(-/!.+34($)($!4(VAN(+8C/%!(4#/%$*$%&!$+)6((7./(G7>\KIA(4#/%$*$/4(<343V)+1'/35/G$*!/,T(

1.$%.(1+2'3(8/(4#/%$*$/3(&4(&(<343;2)%!$+)B+$)!(+8C/%!6((<343;2)%!$+)B+$)!($4(&(428%'&44(+*(

<343I/#+4$!+,"(1.$%.(4!+,/4(!./(/)3#+$)!T(+,(HILT(+*(!./(&5/)!6((K4(&(BI>A>O>GG@IT(

<34#O'&44$*"I/]2/4!($4(!./(#,/0$+24(#,+%/44($)(!./(%.&$)6((7./()/U!(4!/#($)(!./(#,+%/44(1$''(8/(!./(

GHOO>GG@I(<34#O+-#$'/G/&,%.I/42'!46(

E^@KNG

E7KGV <34#A$4%+0/,

E7?I>KA <34#=&)&5/-/)!

E@\P>I <343G/&,%.K5/)!

EG7>\KIA <343V)+1'/35/G$*!/,

EBI>A>O>GG@IG <34#O'&44$*"I/]2/4!

EGHOO>GG@IG(

EG7>BG EG7>BPK=> G/&,%.HAAL

EG>_H>PO>DPH=M>I W

EG7>BDA>GOILB7L@P

EG7>BDGHOO>GG@ID=@A> A/%4+)

EG7>BDGHOO>GG@IDMIKPO? <34#K3C24!G/&,%.B&,&-/!/,4 EG7>BDO@P7I@NDO@PAL7L@P L)42**$%$/)!(I/42'!4

EG7>BDGHOO>GG@ID=@A> G/]2/)!$&'

EG7>BDGHOO>GG@IDMIKPO? <34#I&)<I/42'!4 EG7>BDO@P7I@NDO@PAL7L@P G2**$%$/)!(I/42'!4

EA>N>^K7> <343V)+1'/35/G$*!/,

EA>N>^K7>D7JB> K^>P7

EA>N>^K7>DI@N> NLP>

E@B>IK7L@P 4/&,%.HAAL

E=>7?@ADPK=> <343V)+1'/35/G$*!/,6G/&,%.

EO@PG7IKLP7

E?>HILG7LOG

G/&,%.(!./(HAAL(,/5$4!,"(*+,(&%%/#!&8'/(#,+0$3/,4(&)3(4/,0$%/4

+8C/%!D!"#/EEF<34#G/&,%.;+,B,+0$3/,4

B,+0$3/,G/&,%.^+&'(Y;$)3(4/,0$%/4(*,+-(#,+0$3/,4(!.&!(-//!(!./(5+&'4(+*(!./(,/]2/4!Z

<343G/&,%.I/!2,)N$-$!(YI/!2,)(+)'"(!./(!+#(`SZ

<34#O+-#$'/G/&,%.I/42'!4

B&,!)/,4(1.+(&,/($)(8&)<,2#!%"(&,/(&(8&3(,$4<a(!./,/*+,/T(3+()+!(24/(4/,0$%/4(*,+-(#,+0$3/,4(1.+(&,/($)(8&)<,2#!%"b (

7.$4(4&-#'/(#,+%/44(+8C/%!(.&4(!./(4$)5'/(4!/#(+*(G/&,%.HAALT(1$!.(<343V)+1'/35/G$*!/,(3/4$5)&!/3(&4(

!./(A>N>^K7>(&4(1/''6((P+!$%/(!./(8,&)%.$)5(&8$'$!"(+*(VAGBN(0$&(!./(G7>BDGHOO>GG@ID=@A>T(

G7>BDO@P7I@NDO@PAL7L@P(&)3(G7>BDGHOO>GG@IDMIKPO?(&,52-/)!46((((7+(3/-+)4!,&!/(

&)+!./,(-/!.+3(!+(3")&-$%&''"(&3C24!(!./(1+,<*'+1T($*(cL)42**$%$/)!(I/42'!4d(&,/(3/'$0/,/3T(!./(#,+%/44(

<34#K3C24!G/&,%.B&,&-/!/,4($4($)0+</3a(+!./,1$4/(!./(#,+%/44(%+)!$)2/4(!+(/U/%2!/(<34#I&)<I/42'!46((7./(

A>N>^K7>D7JB>(3/4$5)&!/4(&('$)/(&5/)!(Y0$&(!./(A>N>^K7>DI@N>Z6((7./(+#/,&!$+)($4(4#/%$*$/3(&4(!./(

G/&,%.(-/!.+3(*,+-(<343V)+1'/35/G$*!/,6((7./(O@PG7IKLP7(<343G/&,%.I/!2,)N$-$!(4#/%$*$/4(!+('$-$!(

!./(4/&,%.(,/42'!4(!+(!./(!+#(`S(,&)</3(4/,0$%/46((7./(,2'/($)(?>HILG7LOG(4&"4(!.&!(!./(/)!/,#,$4/(3+/4()+!(

1&)!(!+(3/&'(1$!.(824$)/44/4(!.&!(&,/($)(8&)<,2#!%"6(

P+!&!$+)4(?(Y<34#=+G/-&)!$%\/8Z(&)3((@(Y<34#=+;VKZ(8+!.(24/(!./(+8C/%!D!"#/(&)3(!./(

&!!,$82!/4(!+(!./$,(!&,5/!46((P+!&!$+)4(A(Y<34#=+=/3$&!$+)K5/)!Z(&)3(.(Y<34#=+G/-&)!$%\/8Z(

Fig. 13. kdspSearchForProviders KDSPL specification.

PREDECESSOR, kdspClassifyRequest is the previous process in the chain. The

next step in the process will be the SUCCESSOR kdspCompileSearchResults.

This sample process object has the single step of SearchUDDI, with

kdsdKnowledgeSifter designated as the DELEGATE as well. Notice the branch-

ing ability of KDSPL via the STEP-SUCCESSOR-MODE, STEP-CONTROL-

CONDITION and STEP-SUCCESSOR-BRANCH arguments. To demonstrate

another method to dynamically adjust the workflow, if “Insufficient Results” are

delivered, the process kdspAdjustSearchParameters is invoked; otherwise the pro-

cess continues to execute kdspRankResults. The DELEGATE-TYPE designates a

line agent (via the DELEGATE-ROLE). The operation is specified as the Search

method from kdsdKnowledgeSifter. The CONSTRAINT kdsdSearchReturnLimit

specifies to limit the search results to the top 25 ranked services. The rule in

HEURISTICS says that the enterprise does not want to deal with businesses that

are in bankruptcy.

Notations B (kdspMapToSemanticWeb) and C (kdspMapToFKA) both use

the object-type and the attributes to their targets. Notations G (kdspMap-

ToMediationAgent) and H (kdspMapToSemanticWeb) show the pseudo-code

to map to their respective targets. Notations D (kdsdHurricaneEvent) and I

November 18, 2004 14:6 WSPC/111-IJCIS 00102

478 R. Howard & L. Kerschberg

(kdspSearchForProviders) show a potential tagging for the kdsdHurricaneEvent

in SWS format. The arrow from notation D back to the database trigger denotes

that the SWS format can be stored in an XML database. Notation E exempli-

fies the instantiation of workflow based on the Distributed Agency-based Resource

Management methodology.

5. Future Work

This research is still at an abstract level, and a proof-of-concept implementation

of the framework is planned to demonstrate and mature the facets of the research.

The first step is to create a demonstration of how the components work together

to automate Web services. Future work for the framework also includes creating

a modeling facility for the unique approach of the multi-dimensional methodology

that integrates the meta-model.

Figure 14 shows the architecture with KDSWS Specification and

KDSWS Functional Architecture components to support the limited implementa-

tion. The three basic types of objects in the specification are atomic, composed

and internally-mapped (or mapped for short). The atomic objects are comprised

of attributes are not other objects; contrasted with the aggregated objects whose

attributes consist of other objects (type = Object). The mapped objects’ rules

are invoked dynamically to aggregate the object, which is achieved by adding the

kdsdMapObject attribute (set to True) and including a test for the Boolean con-

dition in the rules that are involved in the aggregation. Other methods for this

dynamic mapping are explained in Sec. 3.

The Import Agent and Export Agent are specialized types of the Mapping Agent

that control the mapping in and out of the KDL and KDSPL specifications, and

the three agents are examples of internal agents that support the infrastructure

of the framework. The implementation imports and maps the specialty engine

(e.g. WfMS and Expert Systems) data into the specification. Agent Profiles are

exported to specify the purpose and behavior of the agents involved in the im-

plementation; whereas, Profiles are exported to guide the life-cycle activities. The

Master Request is exported out of the specification and into an enact-able form that

the Request Handling Agent can process to commence the work of the Workflow

and Broker. Knowledge Objects are exported to not only to store knowledge, but

to specify how to use the knowledge (in this case, the ontologies are the targeted

object). We also plan to incorporate the Knowledge Sifter agent into the brokering

activities to demonstrate interoperation with existing agents.

The implementation will map to our semantically-enhanced versions (denoted

by the “+” suffixes) of UDDI, WSDL, and OWL-S to demonstrate how the frame-

work co-exists with current technology offerings. Recommendations are emerging in

the literature for these semantic enhancements. In order to facilitate quicker adop-

tion, we are leaning towards structures that leverage existing functionality within

current technologies as much as possible. We are exploring the use of specialized

November 18, 2004 14:6 WSPC/111-IJCIS 00102

A Framework for Dynamic Semantic Web Services Management 479

 29

K D S W S S p e c i f ic a t io n

K D S W S F u n c t io n a l A r c h i t e c tu r e

E x p o r t

A g e n t

K D L K D S P L

D e l i v e r y

A g e n t

B r o k e r

A g e n t

W S D L +U D D I+O W L - S +

A to m ic K D L

O b je c t s

M a s te r

S e r v ic e s

W o r k f lo w

A g e n t

O n to lo g ie s

F u l f i l lm e n t

P a c k a g e
C o n f ig u r a t io n

P a c k a g eK n o w le d g e

S i f t e r

M a s te r

R e q u e s t

E x p e r t

S y s te m s
W f M S

A g g r e g a te d

K D L O b je c t s

A g g r e g a te d

K D S P L

O b je c t s

A t o m ic

K D S P L

O b je c t s

M a p p e d
K D S P L

O b je c t s

A g e n t

P r o f i l e s

W o r k f lo w
P a t te r n s

R u le s
O b je c t s

P o l ic ie s

Im p o r t

A g e n t
M a p p e d K D L

O b je c t s

M a p p in g

A g e n t

K n o w le d g e

O b je c t s

P u b l i s h
A g e n t

R e q u e s t

H a n d l in g

A g e n t

!

"#$! %&'($&$)*+*%,)! -%((! &+'! *,! ,./! 0$&+)*%1+((23$)#+)1$4! 5$/0%,)0! 64$),*$4! 72! *#$! 89:! 0.;;%<$0=! ,;!

>??@A!BC?DA!+)4!EBD3C!*,!4$&,)0*/+*$!#,-!*#$!;/+&$-,/F!1,3$<%0*0!-%*#!1.//$)*!*$1#),(,G2!,;;$/%)G0H!!

I$1,&&$)4+*%,)0! +/$! $&$/G%)G! %)! *#$! (%*$/+*./$! ;,/! *#$0$! 0$&+)*%1! $)#+)1$&$)*0H! ! @)!,/4$/! *,! ;+1%(%*+*$!

J.%1F$/! +4,'*%,)A! -$! +/$! ($+)%)G! *,-+/40! 0*/.1*./$0! *#+*! ($5$/+G$! $<%0*%)G! ;.)1*%,)+(%*2! -%*#%)! 1.//$)*!

$1#),(,G%$0!+0!&.1#!+0!',00%7($H!!B$!+/$!$<'(,/%)G!#$!.0$!,;!0'$1%+(%K$4!5$/0%,)0!,;!*#$!/,,*!+)4!+;;%(%+*$!

/$G%0*/%$0! %)*/,4.1$4! -%*#! >??@3L! MNLOH! ! B$! #,'$! *,! 1/$+*$! 0'$1%+(%K$4! 4+*+! *2'$0! ;,/! *#$! BC?D! ,/!

',00%7(2!$0*+7(%0#%)G!*#$!P.(;%((&$)*!Q+1F+G$!+0!+)!+**+1#&$)*!*,!*#$!CERQ!&$00+G$H!!P,/!EBD3CA!-$!;$$(!

#+!)$-!$<*$)0%,)0!-%((!7$!)$1$00+/2!*,!0.'',/*!*#$!%&'($&$)*+*%,)!,;!*#%0!/$0$+/1#H!!@*!%0!+(0,!',00%7($!*#+*!

+44%*%,)+(!1,)1$'*0!-%*#!*#$!/$;%)%)G!,;!1,)1$'*0!-%((!7$!/$J.%/$4!;,/!*#%0!*,!-,/F!-%*#!EBD3CH!

6 Conclusions

@)!,/4$/!*,!+11$($/+*$!*#$!%)*/,4.1*%,)!,;!)$-!1,)1$'*0!+)4!020*$&0A!-$!)$$4!+''/,+1#$0!-#%1#!+.*,&+*$!

#$! $)%/$!B$7! 0$/5%1$0! (%;$3121($! +)4! +44/$00! *#$! %00.$0! /$(+*$4! *,! S%/*.+(! E/G+)%K+*%,)0H! ! ! "#%0! '+'$/!

'/0)*0!+)!+G$)*37+0$4!+''/,+1#! *,!&+)+G%)G! *#$!7/,F$/%)G!,;!C$&+)*%1!B$7!C$/5%1$0! ;,/!.0$!-%*#%)!+!

S%/*.+(!E/G+)%K+*%,)A!+)4!%0!'+/*!,;!+!(+/G$/!&$*#,4,(,G2A!1+(($4!*#$!T?CBC!P/+&$-,/FH!!"#$!;/+&$-,/F!

'/,5%4$0! +! ;,/&+(! &,4$(37+0$4! +''/,+1#! *,! %&'($&$)*%)G! B$7! 0$/5%1$0! *#+*! 0'$1%;%$0! *#$! &,4$(%)GA!

0'$1%;%1+*%,)A! 4$0%G)A! %&'($&$)*+*%,)! +)4! 4$'(,2&$)*! ,;! 020*$&0! 1,&',0$4! ,;! CBCH! ! "#$! &$*+3&$*+3

&,4$(!1,&7%)$0!T?CBC!1,)0*/.1*0!-%*#!I?P!+)4!I?PC!1,)1$'*0H!!"#$!&$*+3&,4$(!%0!1,.1#$4!%)!>UD!

$/&%),(,G2!-#%1#!1+)!7$!&+''$4!,!EBDH!

"#$!G,+(!,;!*#$!;/+&$-,/F!%0!*,!0.'',/*!*#$!+.*,&+*%1!4%01,5$/2A!1,&',0%*%,)A!$<$1.*%,)!+)4!&+)+G$&$)*!

,;!B$7!0$/5%1$0!;,/!*#$!S%/*.+(!E/G+)%K+*%,)!%)!+!'/,*,1,(3%)4$'$)4$)*!&+))$/H!!"#%0!SE!%0!*#$!'+/+4%G&!

-$!.0$!*,!4$),*$!*#+*!*#$!T?CBC!1+)!#+)4($!7,*#!@)*$/3V)*$/'/%0$!+)4!@)*/+3V)*$/'/%0$!1,,/4%)+*%,)!+)4!

%)*$/,'$/+*%,)!%00.$0H!!

Fig. 14. Scenario implementation architecture.

versions of the root and affiliate registries introduced with UDDI-3.73 We hope to

create specialized data types for the WSDL or possibly establishing the Fulfillment

Package as an attachment to the SOAP message. For OWL-S, we feel that new

extensions will be necessary to support the implementation of this research. It is

also possible that additional concepts with the refining of concepts will be required

for this to work with OWL-S.

6. Conclusions

In order to accelerate the introduction of new concepts and systems, we need

approaches which automate the entire Web services life-cycle and address the

issues related to Virtual Organizations. This paper presents an agent-based

approach to managing the brokering of Semantic Web Services for use within a

Virtual Organization, and is part of a larger methodology, called the KDSWS

November 18, 2004 14:6 WSPC/111-IJCIS 00102

480 R. Howard & L. Kerschberg

Framework. The framework provides a formal model-based approach to implement-

ing Web services that specifies the modeling, specification, design, implementation

and deployment of systems composed of SWS. The meta-meta-model combines

KDSWS constructs with RDF and RDFS concepts. The meta-model is couched in

UML terminology which can be mapped to OWL.

The goal of the framework is to support the automatic discovery, composi-

tion, execution and management of Web services for the Virtual Organization in a

protocol-independent manner. This VO is the paradigm we use to denote that the

KDSWS can handle both Inter-Enterprise and Intra-Enterprise coordination and

interoperation issues.

The framework provides a broader scope because it provides a comprehen-

sive solution by addressing the backend specification for federating enterprise re-

sources, agents and knowledge repositories. It is integrated because the de-coupled

data (description) and process (function) specifications, as well as the overarching

methodology and process instantiations, are specified by the same foundation —

the KDM/KDL. Interoperability is facilitated by the integrated design space and

mediation structures. The framework is knowledge-based because it uses heuristics

to associate the knowledge to objects and services, and captures usage context as

well. This rules-based approach facilitates the dynamic profiling of resources as well

as quick adaptation to the rapidly changing Web services standard and protocol

base. The term “semantic” denotes the knowledge-based semantic specification of

the relevant features and functions provided by the Web Service.

In order to address the multitude of issues in this area, we propose the KDSWS

Framework as a way to combine three important, and inter-related, viewpoints:

• The KDSWS Process viewpoint addresses issues related to workflow, transaction-

control, security, and interoperation in the form of “threads”. The delineation

between the resource-based and process-based classes in the meta-model provides

crisper concepts for the framework to specify tighter designs.

• The KDSWS Design Specification viewpoint models objects, relationships,

constraints, heuristics, and processes using the KDM/KDL and extensions

KDSPM/KDSPL to handle special features of Semantic Web Service specifi-

cations. The advantage provided by a separate and integrated specification is the

VO can adjust to a constantly changing protocol base more rapidly by develop-

ing the mappings from the consistent base versus having to recode the affected

interfaces.

• The KDSWS Functional Architecture provides an agent-based architecture to

implement systems via composable Semantic Web Services. The architecture in-

cludes Functional Architectures for knowledge represented in repositories, feder-

ation policy, rules, agents, Web service protocols, and agent services to manage

various aspects of deploying Semantic Web Services.

Referring to the previously presented issues that Web services need to address,5

this framework addresses Semantic Unification with the use of mediation and

November 18, 2004 14:6 WSPC/111-IJCIS 00102

A Framework for Dynamic Semantic Web Services Management 481

integrated data/process specification. Message Behavior is addressed in the trans-

portation and transaction threads. Endpoint Discovery is enhanced through the

proposed extensions to UDDI and WSDL. Message Security and Trust Relation-

ships is dealt with specifically in the Security thread as well in the Federation

activities. Process Management is the focus of the KDSPL process and workflow

steps. Integration Standards are facilitated with the integrated design and allows

adapting more easily to emerging standards. Legacy Application Connectivity is

handled to by the federation activities and the associated mediation.

Finally, our research indicates that the KDSWS semantic modeling techniques

and methodology, when applied to service-oriented systems exemplified by Semantic

Web Services, helps to address the plethora of issues needed to successfully deploy

them in real-world applications. The semantically-enabled workflow and feedback

processes provide a managed approach to the dynamic delivery of Web services. The

multiple viewpoints help to isolate and identify important issues and the mappings

from viewpoint to viewpoint assure that the structures, operations, and constraints

are properly mapped and preserved.

Acknowledgments

This work was sponsored by a NURI from the National Geospatial-Intelligence

Agency (NGA). This work was also supported in part by the Advanced Research

and Development Activity (ARDA). Any opinions, findings and conclusions or

recommendations expressed in this material are those of the authors and do not

necessarily reflect the views of the US Government.

References

1. A. Bosworth, Developing web services, in Proc. 17th Int. Conf. Data Engineering,
2001.

2. UDDI, UDDI version 3 features list,
http://www.uddi.org/pubs/uddi v3 features.htm# Toc10457162.

3. M. Gudgin, M. Hadley, N. Mendelsohn, J.-J. Moreau and H. F. Nielsen, SOAP
Version 1.2 Part 1: Messaging framework, 2003, http://www.w3.org/TR/SOAP/.

4. R. Chinnici, M. Gudgin, J.-J. Moreau, J. Schlimmer and S. Weerawarana, Web
services description language (WSDL Version 2.0 Part 1: Core language, 2002),
http://www.w3.org/TR/wsdl20/.

5. C. Bussler, D. Fensel and N. Sadeh, Semantic web services and their role in
enterprise application integration and e-commerce, 2003,
http://lists.w3.org/Archives/Public/www-rdf-interest/2003Mar/att-0008/
ijec special issue cfp.pdf.

6. T. Berners-Lee, J. Hendler and O. Lassila, The Semantic Web: A new form of
Web content that is meaningful to computers will unleash a revolution of new possi-
bilities,” Scientific American 284 (2001), 34–43,
http://www.sciam.com/article.cfm?articleID=00048144-10D2-1C70-
84A9809EC588EF21.

7. O. Lassila and R. R. Swick, Resource Description Framework (RDF) model and syntax
specification, 1999, http://www.w3.org/TR/1999/REC-rdf-syntax-19990222/#intro.

November 18, 2004 14:6 WSPC/111-IJCIS 00102

482 R. Howard & L. Kerschberg

8. J. Hendler, DAML: DARPA agent markup language effort (http://www.daml.org/),
2002, http://www.daml.org/.

9. Ontoknowledge, Description of OIL, http://www.ontoknowledge.org/oil/.
10. D. Fensel, F. van Harmelen, I. Horrocks, D. L. McGuinness and P. F. Patel-Schneider,

OIL: An ontology infrastructure for the Semantic Web, IEEE Intelligent Systems 16
(2001) 38–45.

11. DAML.org, Reference description of the DAML+OIL (March 2001) ontology markup
language, 2001, http://www.daml.org/2001/03/reference.html.

12. S. Bechhofer, F. v. Harmelen, J. Hendler, I. Horrocks, D. L. McGuinness, P. F.
Patel-Schneider and L. A. Stein, “OWL Web ontology language reference (2003),
http://www.w3.org/TR/owl-ref/#DatatypeSupport.

13. DAML.org, OWL-S: Semantic markup for web services (2003)
http://www.daml.org/services/owl-s/1.0/owl-s.html.

14. M. Paolucci, K. Sycara and T. Kawamura, Delivering Semantic Web services (2003),
http://www.ri.cmu.edu/pub files/pub4/paolucci massimo 2003 1/
paolucci massimo 2003 1.pdf.

15. T. Berners-Lee, Web services — Semantic Web (2003),
http://www.w3.org/2003/Talks/0521-www-keynote-tbl/Overview.html.

16. E. Cerami, Web Services Essentials, 1st edn (O’Reilly, CA, Sebastopol, Beijing, 2002).
17. S. A. McIlraith, T. C. Son and H. Zeng, Semantic web services, IEEE Intelligent

Systems 16 (2001) 46–53.
18. R. L. Reid, K. J. Rogers, M. E. Johnson and D. H. Liles, Engineering

the virtual enterprise, Automation & Robotics Research Institute,
http://arri.uta.edu/eif/ve ie.pdf.

19. I.-Y. Ko and R. Neches, Composing web services for large-scale tasks, IEEE Internet
Computing (September/October, 2003), pp. 52–59.

20. OASIS, Security Assertion Markup Language (SAML) (2002),
http://www.oasis-open.org/committees/security.

21. IBM, Specification: Web Services Security (WS-Security, 2002),
ftp://www6.software.ibm.com/software/developer/library/ws-secure.pdf.

22. A.-W. a. N. Scheer, Markus, (ARIS architecture and reference models for business
process management), 2000.

23. A. Arkin, Business process modeling language (2002), http://www.bpmi.org/bpml-
spec.esp.

24. A. Gomez-Perez, R. Gonzalez-Cabero and M. Lama, A framework for design and
composition of Semantic Web services, 2004 AAAI Spring Symposium Series, Stanford
University Palo Alto, CA (2004),
http://www.daml.ecs.soton.ac.uk/SSS-SWS04/44.pdf.

25. P. Mika, M. Sabou, A. Gangemi and D. Oberle, Foundations for OWL-S: Aligning
OWL-S to DOLCE, 2004 AAAI Spring Symposium Series, Stanford University Palo
Alto, CA (2004), http://www.daml.ecs.soton.ac.uk/SSS-SWS04/23.pdf/.

26. M. Paolucci, J. Soudry, N. Srinivasan and K. Sycara, A broker for OWL-S web services,
2004 AAAI Spring Symposium Series, Stanford University Palo Alto, CA (2004),
http://www.daml.ecs.soton.ac.uk/SSS-SWS04/40.pdf.

27. L. Wilkes, The web services protocol stack, CBDI Web Services Roadmap (2004),
http://roadmap.cbdiforum.com/reports/protocols/index.php.

28. IBM, Specification: Business process execution language for web services version 1.1
(2003), http://www-106.ibm.com/developerworks/library/ws-bpel/.

29. A. Arkin, S. Askary, S. Fordin, W. Jekeli, K. Kawaguchi, D. Orchard, S. Pogliani, K.
Riemer, S. Struble, P. Takacsi-Nagy, I. Trickovic and S. Zimek, Web Service Chore-
ography Interface (WSCI) 1.0 (2002), http://www.w3.org/TR/wsci/.

November 18, 2004 14:6 WSPC/111-IJCIS 00102

A Framework for Dynamic Semantic Web Services Management 483

30. D. Austin, A. Barbir, E. Peters and S. Ross-Talbot, Web services choreography
requirements 1.0 (2003), http://www.w3.org/TR/2003/WD-ws-chor-reqs-20030812/.

31. D. Briukhov, L. Kalinichenko and I. Tyurin, Extension of compositional informa-
tion systems development for the web services platform, Advances in Databases and
Information Systems 2798/2003 (2003) 16–29.

32. WSMO, Web services modeling ontology (2004), http://www.wsmo.org/index.html.
33. B. Hofreiter, C. Huemer and W. Klas, ebXML: Status, research issues and obstacles,

Research Issues in Data Engineering: Engineering E-Commerce/E-Business Systems,
2002. RIDE-2EC 2002, Proceedings of the Twelfth International Workshop (2002).

34. ebXML, About ebXML (2004), http://www.ebxml.org/geninfo.htm.
35. S. Patil and E. Newcomer, ebXML and web services, Internet Computing, IEEE 7

(2003) 74–82.
36. RosettaNet, RosettaNet PIPs (2004),

http://www.rosettanet.org/RosettaNet/Rooms/DisplayPages/
LayoutInitial?Container=com.webridge.entity.
Entity[OID[279B86B8022CD411841F00C04F689339]].

37. Whatis.techtarget.com, Virtual organization,
http://whatis.techtarget.com/definition/0,,sid9 gci213301,00.html/.

38. I. Foster, C. Kesselman and S. Tuecke, The anatomy of the grid: Enabling scalable
virtual organizations (2001), http://www.globus.org/research/papers/anatomy.pdf.

39. Grid computing, searchcio.techtarget.com.
http://searchcio.techtarget.com/sDefinition/0,,sid19 gci773157,00.html.

40. I. Foster, C. Kesselman, J. M. Nick and S. Tuecke, The physiology of the grid: An
open grid services architecture for distributed systems integration (2002),
http://www.globus.org/research/papers/physiology.pdf.

41. M. Cannataro, Knowledge discovery and ontology-based services on the grid, in Proc.
Global Grid Forum Semantic Grid Research Group, 2003, in Chicago IL, USA.

42. A. M. Tjoa, P. Brezany and I. Janciak, Towards grid based intelligent information
systems, in Proc. 2003 Int. Conf. Parallel Processing (2003).

43. P. Shread, Grid, web services get closer (2004),
http://www.gridcomputingplanet.com/news/article.php/3304571.

44. K. Czajkowski, D. F. Ferguson, I. Foster, J. Frey, S. Graham, I. Sedukhin, D. Snelling,
S. Tuecke and W. Vambenepe, The WS-resource framework (2004),
http://www-106.ibm.com/developerworks/library/ws-resource/ws-wsrf.pdf.

45. N. Nayak, K. Bhaskaran and R. Das, Virtual enterprises-building blocks for dynamic
e-business VO-, in Proc. Workshop on Information Technology for Virtual Enterprises
(ITVE 2001) in (2001).

46. D. Booth, H. Haas, F. McCabe and E. Newcomer, Web services architecture (2003),
http://www.w3.org/TR/ws-arch/.

47. OASIS, Management using web services: Architecture (2003),
http://www.oasis-open.org/committees/documents.php?wg abbrev=wsdm.

48. S. Bajaj, G. Della-Libera, B. Dixon et al., Web services federation language
(WS-Federation) (2003),
http://msdn.microsoft.com/webservices/understanding/advancedwebservices/
default.aspx?pull=/library/en-us/dnglobspec/html/ws-federation.asp.

49. M. Giovanni Della-Libera, M. Brendan Dixon, M. Mike Dusche et al., Federation of
identities in a web services world (2003),
http://www-106.ibm.com/developerworks/webservices/library/ws-fedworld/.

50. R. Howard and L. Kerschberg, A framework for dynamic Semantic Web services
management, Special Issue on Service Oriented Modeling, Int. J. Coop. Information
Systems, (Accepted for Publication) (2004), http://www.ise.gmu.edu/techrep/2004/.

November 18, 2004 14:6 WSPC/111-IJCIS 00102

484 R. Howard & L. Kerschberg

51. D. Fensel and C. Bussler, The web service modeling framework WSMF,
http://www.swsi.org/resources/wsmf-paper.pdf.

52. W. D. Potter and L. Kerschberg, The knowledge/data model: An integrated approach
to modeling knowledge and data, Data and Knowledge (DS-2), eds. R. A. Meersman
and A. C. Sernadas (North Holland, Amsterdam, 1988).

53. G. Heidel, Web services standards: Can there be a consensus?, www.wsj2.com (2002),
http://classweb.gmu.edu/kersch/infs770/Topics/Web Services/
WebServicesStandards.pdf.

54. D. A. Menasce, QoS issues in Web services, IEEE Internet Computing 6 (2002) 72–75.
55. J. A. Miller, W. D. Potter and K. J. Kochut, On the integration of knowledge, data

and models (1992), http://citeseer.nj.nec.com/cache/papers/cs/821/
http:zSzzSzorion.cs.uga.edu:5080zSz∼jamzSzjsimzSz..zSzpaperszSzintegration.pdf/
on-the-integration-of.pdf.

56. ObjectManagementGroup, Meta Object Facility (MOF) specification version 1.4
(2003), http://www.omg.org/docs/formal/02-04-03.pdf.

57. A. Sheth, C. Bertram, D. Avant, B. Hammond, K. Kochut, and Y. Warke, Managing
semantic content for the web, IEEE Internet Computing 6 (2002), 80–87.

58. H. Haas and D. Orchard, Web services architecture usage scenarios (2003),
http://www.w3.org/TR/2003/WD-ws-arch-scenarios-20030514/#S201.

59. DublinCore, Dublin core metadata element set, version 1.1: reference description
(2003), http://www.dublincore.org/documents/dces/.

60. M. Nodine, A. H. H. Ngu, A. Cassandra and W. G. Bohrer, Scalable semantic broker-
ing over dynamic heterogeneous data sources in InfoSleuth, IEEE Trans. Knowledge
and Data Engineering 15 (2003) 1082–1098.

61. A. de Moor and W.-J. van den Heuvel, Web service selection in virtual communities,
System Sciences, 2004, Proc. 37th Annual Hawaii Int. Conf. (2004).

62. L. Kerschberg, M. Chowdhury, A. Damiano, H. Jeong, S. Mitchell, J. Si and
S. Smith, Knowledge sifter: Ontology-driven search over heterogeneous databases,
SSDBM 2004, Int. Conf. Scientific and Statistical Database Management, Santorini
Island, Greece, IEEE, 2004 (submitted for publication).

63. L. Kerschberg, Functional approach to in internet-based applications: Enabling the
semantic web, e-business, web services and agent-based knowledge management, in
The Functional Approach to Data Management, eds. P. M. D. Gray, L. Kerschberg,
P. King and A. Poulovassilis (Springer, Heidelbeg, 2004) 369–392.

64. L. Kerschberg and D. J. Weishar, Conceptual models and architectures for advanced
information systems, Applied Intelligence 13 (2000) 149–164.

65. B. Ryder, Formal languages (2002),
http://remus.rutgers.edu/cs314/f2002/ryder/lectures/formal-2New.pdf.

66. J. Miller, W. Potter, K. Kochut, A. Keskin and E. Ucar, The active KDL object
oriented database system and its application to simulation support, J. Object-Oriented
Programming, Special Issue on Databases (1991), pp. 30–45.
http://citeseer.nj.nec.com/cache/papers/cs/821/
http:zSzzSzorion.cs.uga.edu:5080zSz∼jamzSzjsimzSz..zSzpaperszSzactivekdl.pdf/
miller91active.pdf.

67. P. M. D. Gray, L. Kerschberg, P. King and A. Poulovassilis, The Functional Approach
to Data Management (Springer, Heidelberg, 2003).

68. A. Brodsky, L. Kerschberg and S. Varas, Resource management in agent-based dis-
tributed environments, Lecture Notes in Computer Science, vol. 1652/1999, 1999,
pp. 61–85.

November 18, 2004 14:6 WSPC/111-IJCIS 00102

A Framework for Dynamic Semantic Web Services Management 485

69. N. F. Noy and M. A. Musen, Ontology versioning as an element of an ontology-
evolution framework, IEEE Intelligent Systems (2003),
http://smi-web.stanford.edu/pubs/SMI Abstracts/SMI-2003-0961.html.

70. R. Urro and W. Winiwarter, Specifying ontologies: Linguistic aspects in problem-
driven knowledge engineering, in Proc. Second Int. Conf. Web Information Systems
Engineering (2001).

71. L. Pouchard, L. Cinquini, B. Drach, D. Middleton, D. E. Bernholdt, K. Chanchio,
I. T. Foster, V. Nefedova, D. Brown, P. Fox, J. Garcia, G. Strand, D. Williams, A.
L. Chervanek, C. Kesselman, A. Shoshani and A. Sim, An ontology for scientific
information in a grid environment: The earth system grid, CCGRID 2003 (2003).

72. L. Kerschberg, M. Chowdhury, A. Damiano, H. Jeong, S. Mitchell, J. Si and S. Smith,
Knowledge sifter: Ontology-driven search over heterogeneous databases, SSDBM
2004, Int. Conf. Scientific and Statistical Database Management, 2004, Santorini
Island, Greece.

73. UDDI, UDDI version 3 Features list (2004),
http://uddi.org/pubs/uddi v3 features.htm.

